- Home
- Standard 11
- Physics
$1 \,kg$ संहति के किसी गुटके को एक कमानी से बाँधा गया है । कमानी का कमानी स्थिरांक $50 \,N\, m ^{-1}$ है । गुटके को उसकी साम्यावस्था की स्थिति $x=0$ से $t=0$ पर किसी घर्षणहीन पृष्ठ पर कुछ दूरी $x=10 \,cm$ तक खींचा जाता है । जब गुटका अपनी माध्य-र्थिति से $5\, cm$ दर है, तब उसकी गतिज, स्थितिज तथा कुल ऊर्जाएँ परिकलित कीजिए ।
Solution
The block executes $SHM$, its angular frequency, as given
$\omega =\sqrt{\frac{k}{m}}$
$=\sqrt{\frac{50\, N m ^{-1}}{1 \,kg }}$
$=7.07 \,rad\, s ^{-1}$
Its displacement at any time t is then given by,
$x(t)=0.1\, \cos (7.07\, t)$
Therefore, when the particle is $5\; cm$ away from the mean position, we have
$0.05=0.1 \,\cos\, (7.07\, t)$
$\cos (7.07\, t)=0.5$ and hence
$\sin (7.07 \,t)=\frac{\sqrt{3}}{2}=0.866$
Then, the velocity of the block at $x=5 \,cm$ is
$=0.1 \times 7.07 \times 0.866 \,m s ^{-1}$
$=0.61\, m s ^{-1}$
Hence the $K.E.$ of the block.
$=\frac{1}{2} m v^{2}$
$=1 / 2\left[1\, kg \times\left(0.6123 \,m s ^{-1}\right)^{2}\right]$
$=0.19 \,J$
The $P.E$. of the block,
$=\frac{1}{2} k x^{2}$
$=1 / 2\left(50 \,N m ^{-1} \times 0.05\, m \times 0.05\, m \right)$
$=0.0625 \,J$
The total energy of the block at $x=5\, cm$
$= K.E. + P.E.$
$=0.25 \;J$
we also know that at maximum displacement. $K.E.$ is zero and hence the total energy of the system is equal to the $P.E.$ Therefore, the total energy of the system.
$=1 / 2\left(50 \,N m ^{-1} \times 0.1 \,m \times 0.1 \,m \right)$
$=0.25 J$
which is same as the sum of the two energies at a displacement of $5\; cm$. This is in conformity with the principle of conservation of energy