एक स्प्रिंग (कमानी) का कमानी स्थिरांक $k$ है। इसको तीन भागों में काट दिया गया है जिनकी लम्बाइयों का अनुपात $1: 2: 3$ है। इन तीनों भागों को श्रेणी क्रम में जोड़ने पर, संयोजन का कमानी स्थिरांक $k^{\prime}$ तथा समान्तर क्रम में जोड़ने पर $k ^{\prime \prime}$ है तो, अनुपात $k ^{\prime}: k ^{\prime \prime}$ होगा :

  • [NEET 2017]
  • A

    $1:11$

  • B

    $1:14$

  • C

    $1:16$

  • D

    $1:9$

Similar Questions

एक हल्की स्प्रिंग् से $M$ द्रव्यमान लटकाया जाता है। $m$ द्रव्यमान और लटकाने पर इसमें दूरी $'x'$ की अतिरिक्त वृद्धि हो जाती है। अब संयुक्त द्रव्यमान का इस स्प्रिंग् पर दोलनकाल होगा

$k$, $2k$, $4k$ and $8k$.... स्प्रिंग नियतांक वाली अनन्त स्प्रिंगों को श्रेणीक्रम में जोड़ा गया है। संयोजन का प्रभावी स्प्रिंग नियतांक होगा

$1200\, N\, m ^{-1}$ कमानी-स्थिरांक की कोई कमानी चित्र में दर्शाए अनुसार किसी क्षैतिज मेज से जड़ी है। कमानी के मुक्त सिरे से $3\, kg$ द्रव्यमान का कोई पिण्ड जुड़ा है । इस पिण्ड को एक ओर $2.0\, cm$ दूरी तक खींच कर मुक्त किया जाता है,

$(i)$ पिण्ड के दोलन की आवृत्ति,

$(ii)$ पिण्ड का अधिकतम त्वरण, तथा

$(iii)$ पिण्ड की अधिकतम चाल ज्ञात कीजिए

एक द्रव्यमान $m$, समान लम्बाई की दो स्प्रिंगों से लटका हुआ है। स्प्रिंगों के बल नियतांक क्रमश:${k_1}$ एवं ${k_2}$ हैं। जब पिण्ड को ऊध्र्वाधर दिशा में दोलन कराया जाता है, तो उसका आवर्तकाल होगा

एक $m$ द्रव्यमान की वस्तु श्रेणीक्रम में जुडी हुई ${k_1}$ एवं ${k_2}$ बल नियतांक की स्प्रिंगों से लटकी हुई है। वस्तु का दोलनकाल होगा

  • [AIIMS 2019]