एक द्रव्यमान-रहित स्प्रिंग, जिसका द्रढ़ता गुणांक (stiffness constant) $k$ है, के एक छोर पर $M$ द्रव्यमान का एक गुटका जुडा है, तथा दूसरे छोर को द्रढ़ दीवार से जोड़ा गया है। यह गुटका एक समतल घर्षण-रहित सतह पर एक संतुलित स्थिति $x_0$ के गिर्द छोटे आयाम $A$ से दोलन करता है। यहाँ दो परिस्थितियां मानिए : ($i$) जब गुटका $x_0^6$ पर है और ($ii$) जब गुटका $x=x_0+A$ पर है। दोनों परिस्थितियों में द्रव्यमान $m( < M)$ के एक कण को गुटके पर धीरे से इस प्रकार रखा जाता है की वंह तुरंत गुटके से चिपक जाता है। कण को गुटके के ऊपर रखने के बाद गति के बारे में निम्नलिखित में से कौनसा/कौनसे कथन सत्य है/हैं?
$(A)$ पहली परिस्थिति में दोलन का आयाम $\sqrt{\frac{M}{m+M}}$ भाज्य (factor) से परिवर्तित होता है, जबकि दूसरी परिस्थिति में यह अपरिवर्तित रहता है
$(B)$ दोनों परिस्थितियों में दोलन का अंतिम समयकाल समान है,
$(C)$ दोनों परिस्थितियों में सम्पूर्ण ऊर्जा कम हो जाती है
$(D)$ सम्मिलित द्रव्यमानों की $x_0$ पर तान्क्षणिक गति दोनों परिस्थितियों में कम हो जाती है
$A,B$
$B,D$
$A,B,D$
$A,B,C$
पाँच एक समान स्प्रिंगों के निम्न तीन संयोजन चित्र में उपयोग किया गया हैं। संयोजन (i) (ii) तथा (iii) में ऊध्र्वाधर दोलनों के आवर्तकाल का अनुपात होगा
एक स्प्रिंग से जुड़ा हुआ $1 \;kg$ का एक गुटका $1 \;Hz$ की आवृत्ति से एक घर्षणहीन क्षैतिज मेज पर दोलन करता है। इसी तरह की दो समान्तर स्प्रिंगों से एक $8 \;kg$ का गुटका जोड़कर उसी मेज पर दोलन कराते हैं। $8 \;kg$ के गुटके की दोलन आवृत्ति होगी $\dots \; Hz$
एक स्प्रिंग तुला की स्केल $0$ से $10\, kg$ तक मापन करती है तथा इसकी लम्बाई $0.25\, m$ है। स्प्रिंग तुला से लटकी हुई एक वस्तु $\frac{\pi }{{10}}\sec$ के आवर्तकाल से ऊध्र्वाधर दोलन करती है। लटकी हुई वस्तु का द्रव्यमान ..... $kg$ होगा, (स्प्रिंग का द्रव्यमान नगण्य है)
$1 \,kg$ संहति के किसी गुटके को एक कमानी से बाँधा गया है । कमानी का कमानी स्थिरांक $50 \,N\, m ^{-1}$ है । गुटके को उसकी साम्यावस्था की स्थिति $x=0$ से $t=0$ पर किसी घर्षणहीन पृष्ठ पर कुछ दूरी $x=10 \,cm$ तक खींचा जाता है । जब गुटका अपनी माध्य-र्थिति से $5\, cm$ दर है, तब उसकी गतिज, स्थितिज तथा कुल ऊर्जाएँ परिकलित कीजिए ।
किसी स्प्रिंग से भार लटकाने पर इसकी लम्बाई में वृद्धि $x$ है यदि स्प्रिंग में उत्पन्न तनाव $T$ एवं इसका बल नियतांक $K$ हो तो स्प्रिंग में संचित ऊर्जा है