दो स्प्रिंगों के बल नियतांक ${K_1}$ तथा ${K_2}$ हैं। उन्हें क्रमश: ${F_1}$ तथा ${F_2}$ बलों से इस प्रकार खींचा जाता है कि उनकी प्रत्यास्थ ऊर्जा बराबर हो, तो ${F_1}:{F_2}$ है

  • A

    ${K_1}:{K_2}$

  • B

    ${K_2}:{K_1}$

  • C

    $\sqrt {{K_1}} :\sqrt {{K_2}} $

  • D

    $K_1^2:K_2^2$

Similar Questions

एक $m = 100$ ग्राम संहति वाले पिण्ड को एक हल्की ​स्प्रिंग् के एक सिरे से जोड़ दिया जाता है। स्प्रिंग् एक घर्षणहीन क्षैतिज टेबिल पर दोलन करती है। दोलनों का आयाम $0.16$ मीटर और आवर्तकाल $2$ सैकण्ड है। प्रारम्भ में $t = 0$ सैकण्ड पर जबकि विस्थापन $x =  - 0.16$ मीटर है, पिण्ड को छोड़ा जाता है, तो पिण्ड के विस्थापन का किसी समय $(t)$ पर सूत्र होगा

एक हल्की स्प्रिंग् से $M$ द्रव्यमान लटकाया जाता है। $m$ द्रव्यमान और लटकाने पर इसमें दूरी $'x'$ की अतिरिक्त वृद्धि हो जाती है। अब संयुक्त द्रव्यमान का इस स्प्रिंग् पर दोलनकाल होगा

द्रव्यमान $1 \; kg$ एवं $4 \; kg$ की दो वस्तुऐं एक ऊर्ध्वाधर कमानी द्वारा चित्र के अनुसार जोड़ी गयी हैं। अल्पतर द्रव्यमान कोणीय आवृत्ति $25 \; rad / s$ एवं आयाम $1.6 \; cm$ की सरल आवर्त गति कर रहा है जबकि बृहत्तर द्रव्यमान स्थिर रहता है। निकाय द्वारा फर्श पर लगाया गया अधिकतम बल है ( $g=10 \; ms ^{-2}$ लें).

  • [JEE MAIN 2014]

चित्र में ${S_1}$ व ${S_2}$ दो सर्वसम स्प्रिंग् हैं। द्रव्यमान $m$ की दोलन आवृत्ति $f$ है। यदि एक स्प्रिंग् को हटा दिया जाये तो आवृत्ति हो जायेगी

$K$ बल नियतांक वाली एक स्प्रिंग का एक-चौथाई भाग काट कर अलग कर दिया जाता है। शेष स्प्रिंग का बल नियतांक होगा