- Home
- Standard 11
- Physics
$m$ द्रव्यमान का एक गोलक $L$ लंबाई की हलकी डोरी से लटका हुआ है। इसके निम्नतम बिंदु $A$ पर क्षेतिज वेग $v_{o}$ इस प्रकार लगाया जाता है कि यह ऊर्ध्वाधर तल में अर्धवृत्ताकार प्रक्षेप्य पथ को इस प्रकार तय करता है कि डोरी केवल उच्चतम बिंद $C$ पर ढीली होती है जैसा कि चित्र में दिखाया गया है। निम्न राशियों के लिए व्यंजक प्राप्त कीजिए : $(a)$ $v_{o}$, $(b)$ बिंदुआं $B$ तथा $C$ पर गोलक की चाल, तथा $(c)$ बिंदु $B$ तथा $C$ पर गतिज ऊर्जाओं का अनुपात $\left(K_{B} / K_{c}\right)$ । गोलक के बिंदु $C$ पर पहुंचने के बाद् पथ की प्रकृति पर टिप्पणी कीजिए

Solution

There are two external forces on the bob : gravity and the tension $(T)$ in the string. The latter does no work since the displacement of the bob is always normal to the string. The potential energy of the bob is thus associated with the gravitational force only. The total mechanical energy $E$ of the system is conserved. We take the potential energy of the system to be zero at the lowest point $A$. Thus, at $A:$
$E=\frac{1}{2} m v_{0}^{2}$
$T_{\Lambda}-m g=\frac{m v_{0}^{2}}{L}$ INewton's Second Lawl where $T_{A}$ is the tension in the string at A. At the highest point $C$, the string slackens, as the tension in the string $\left(T_{C}\right)$ becomes zero. Thus, at $C$
$E=\frac{1}{2} m v_{c}^{2}+2 m g L$
$m g=\frac{m v_{c}^{2}}{L} \quad$ [Newton's Second Law]
where $v_{C}$ is the speed at $C$. From above equation
$E=\frac{5}{2} m g L$
Equating this to the energy at $A$
$\frac{5}{2} m g L=\frac{m}{2} v_{o}^{2}$
$v_{0}=\sqrt{5 g L}$
$v_{C}=\sqrt{g L}$
At $B$, the energy is
$E=\frac{1}{2} m v_{B}^{2}+m g L$
Equating this to the energy at $A$ and employing the result in
$v_{o}^{2}=5 g L$
$\frac{1}{2} m v_{B}^{2}+m g L=\frac{1}{2} m w_{0}^{2}$
$=\frac{5}{2} m g L$
$\therefore v_{B}=\sqrt{3 g L}$
$(iii)$ The ratio of the kinetic energies at $B$ and $C$ 1s:
$\frac{K_{B}}{K_{C}}=\frac{\frac{1}{2} m v_{B}^{2}}{\frac{1}{2} m v_{C}^{2}}=\frac{3}{1}$
At point $C$, the string becomes slack and the velocity of the bob is horizontal and to the left. If the connecting string is cut at this instant, the bob will execute a projectile motion with horizontal projection akin to a rock kicked horizontally from the edge of a cliff. Otherwise the bob will continue on its circular path and complete the revolution.