7.Gravitation
hard

A body of mass $m$ is moving in a circular orbit of radius $R$ about a planet of mass $M$. At some instant, it splits into two equal masses. The first mass moves in a circular orbit of radius $\frac{R}{2}$ , and the other mass, in a circular orbit of radius $\frac{3R}{2}$. The difference between the final and initial total energies is

A

$ - \frac{{GMm}}{{2R}}$

B

$ + \frac{{GMm}}{{6R}}$

C

$ - \frac{{GMm}}{{6R}}$

D

$  \frac{{GMm}}{{2R}}$

(JEE MAIN-2018)

Solution

Initial gravitational potential energy,

${E_i} =  – \frac{{GMm}}{{2R}}$

Final gravitational potential energy,

${E_f} =  – \frac{{GMm/2}}{{2\left( {\frac{R}{2}} \right)}}\frac{{GMm/2}}{{2\left( {\frac{{3R}}{2}} \right)}}$

$ =  – \frac{{GMm}}{{2R}} – \frac{{GMm}}{{6R}}$

$ =  – \frac{{4GMm}}{{6R}} =  – \frac{{2GMm}}{{3R}}$

$\therefore $ Difference between initial and final energy,

${E_f} – {E_i} = \frac{{GMm}}{R}\left( { – \frac{2}{3} + \frac{1}{2}} \right) =  – \frac{{GMm}}{{6R}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.