- Home
- Standard 11
- Physics
$m$ द्रव्यमान की एक वस्तु एक समान कोणीय वेग से वृत्तीय पथ पर घूम रही है। वस्तु की गति के दौरान नियत रहता है
त्वरण
वेग
संवेग
गतिज ऊर्जा
Solution
(d) In circular motion
$\vec{v}=\vec{w} \times \vec{r}$
since in circular motion a body changes its direction continually and hence changes its radial vector Now, If angular velocity $\vec{w}$ is constant then for the different radial vector $\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right)$ there will be different velocity of body $\left(i . e . \vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$ as shown in figure The centripetal acceleration of body will be to wards centre but for different position of body there will be different acceleration vector $\left(\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right)$ as shown in fig momentum is given by $\vec{P}=m \vec{v}$
since velocity vector is changing hence, $\vec{P}$ will change In circular motion shown in figure $\left|\vec{r}_{1}\right|=\left|\vec{r}_{2}\right|=\left|\vec{r}_{3}\right|=r$ (radius of circle)
$\Rightarrow|\vec{v}|=|\vec{w}| r$
since $r$ and $|\vec{w}|$ is constant therefore $|\vec{v}|$ is constant for any position of body We know that kinectic energy $(k)$ $k=\frac{1}{2} m|\vec{v}|^{2}$
$\Rightarrow$ kinectic energy $(k)$ of body will be constant