2. Electric Potential and Capacitance
hard

$a$ બાજુવાળી ચોરસ પ્લેટમાથી એક કેપેસીટર બનાવેલ છે જે એક બીજા સાથે ખૂબ નાનો ખૂણો $\alpha$ બનાવે છે. તો તેનો કેપેસીટન્સ કેટલો થાય?

A

$\frac{\varepsilon_{0} a^{2}}{d}\left(1-\frac{3 \alpha a}{2 d}\right)$

B

$\frac{\varepsilon_{0} a^{2}}{d}\left(1-\frac{\alpha a}{4 d}\right)$

C

$\frac{\varepsilon_{0} {a}^{2}}{\mathrm{d}}\left(1+\frac{\alpha {a}}{\mathrm{d}}\right)$

D

$\frac{\varepsilon_{0} a^{2}}{d}\left(1-\frac{\alpha a}{2 d}\right)$

(JEE MAIN-2020)

Solution

Assume small element $dx$ at a distance $x$ from left end

Capacitance for small element $dx$ is

$\mathrm{d} \mathrm{C}=\frac{\varepsilon_{0} \mathrm{a} \mathrm{d} \mathrm{x}}{\mathrm{d}+\mathrm{x} \alpha}$

$C=\int_{0}^{a} \frac{\varepsilon_{0} a d x}{d+x \alpha}$

$=\left.\frac{\varepsilon_{0} a}{\alpha} \ln \left(\frac{1+\alpha a}{d}\right)\right|_{0} ^{a} \quad\left(\ln (1+x) \approx x-\frac{x^{2}}{2}\right)$

$=\frac{\varepsilon_{0} \mathrm{a}^{2}}{\mathrm{d}}\left(1-\frac{\alpha \mathrm{a}}{2 \mathrm{d}}\right)$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.