A car is moving with speed $30$ $m/\sec $ on a circular path of radius $500\, m$. Its speed is increasing at the rate of $2m/{\sec ^2},$ What is the acceleration of the car ........ $m/sec^2$
$2$
$2.7$
$1.8$
$9.8$
A particle is revolving in a circle of radius $2\ m$ with angular velocity $\omega = t^2 -4t + 8\ rad/s$ . The time when speed of the particle becomes $8\ m/s$ is ......... $\sec$
What happens to the centripetal acceleration of a revolving body if you double the orbital speed $v$ and half the angular velocity $\omega $
As shown in the figure, a particle is moving with constant speed $\pi\,m / s$. Considering its motion from $A$ to $B$, the magnitude of the average velocity is:
A body is moving on a circle of radius $80 \,m$ with a speed $20 \,m / s$ which is decreasing at the rate $5 \,m / s ^2$ at an instant. The angle made by its acceleration with its velocity is ..........
A particle of mass $200 \,g$ is moving in a circle of radius $2 \,m$. The particle is just 'looping the loop'. The speed of the particle and the tension in the string at highest point of the circular path are $\left(g=10 \,ms ^{-2}\right)$