एक कक्षा में $b$ लड़के तथा $g$ लड़कियाँ हैं। यदि इस कक्षा में से $3$ लड़के तथा $2$ लड़कियाँ चुनने के तरीकों की संख्या $168$ है, तो $b +3 g$ बराबर है $..........$
$17$
$16$
$15$
$14$
दो कलश हैं। कलश $A$ में $3$ भिन्न लाल गेंदें हैं तथा कलश $B$ में $9$ भिन्न नीली गेंदें हैं। प्रत्येक कलश में से दो गेंदें यादृच्छया निकालकर दूसरे कलश में डाली गई हैं। यह प्रक्रिया जितने तरीकों से की जा सकती है, वह है
$^n{C_r} + {2^n}{C_{r - 1}}{ + ^n}{C_{r - 2}} = $
$EQUATION$ शब्द के अक्षरों से कितने, अर्थपूर्ण या अर्थहीन, शब्दों की रचना की जा सकती है, जबकि स्वर तथा व्यंजक एक साथ रहते हैं ?
$m$ पुस्तके काले आवरण में और $n$ पुस्तकें नीले आवरण में है और सभी पुस्तकें भिन्न है. कुल $(m+n)$ पुस्तकों को आलमारी में कितने ढंग से सजाया जा सकता है जिससे कि काले आवरण वाली सभी पुस्तकें साथ-साथ रहे.
प्राकृत संख्या $n$ का न्यूनतम मान जो कि $C(n,\,5) + C(n,\,6)\,\, > C(n + 1,\,5)$ को संतुष्ट करता है, होगा