A common tangent $T$ to the curves $C_{1}: \frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ and $C_{2}: \frac{x^{2}}{42}-\frac{y^{2}}{143}=1$ does not pass through the fourth quadrant. If $T$ touches $C _{1}$ at ( $\left.x _{1}, y _{1}\right)$ and $C _{2}$ at $\left( x _{2}, y _{2}\right)$, then $\left|2 x _{1}+ x _{2}\right|$ is equal to $......$

  • [JEE MAIN 2022]
  • A

    $19$

  • B

    $18$

  • C

    $17$

  • D

    $20$

Similar Questions

The distance between the directrices of the hyperbola $x = 8\sec \theta ,\;\;y = 8\tan \theta $ is

The magnitude of the gradient of the tangent at an extremity of latera recta of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is equal to (where $e$ is the eccentricity of the hyperbola)

Length of latusrectum of curve $xy = 7x + 5y$ is

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $9 y^{2}-4 x^{2}=36$

Let the equation of two diameters of a circle $x ^{2}+ y ^{2}$ $-2 x +2 fy +1=0$ be $2 px - y =1$ and $2 x + py =4 p$. Then the slope $m \in(0, \infty)$ of the tangent to the hyperbola $3 x^{2}-y^{2}=3$ passing through the centre of the circle is equal to $......$

  • [JEE MAIN 2022]