10-2. Parabola, Ellipse, Hyperbola
normal

A common tangent $T$ to the curves $C_{1}: \frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ and $C_{2}: \frac{x^{2}}{42}-\frac{y^{2}}{143}=1$ does not pass through the fourth quadrant. If $T$ touches $C _{1}$ at ( $\left.x _{1}, y _{1}\right)$ and $C _{2}$ at $\left( x _{2}, y _{2}\right)$, then $\left|2 x _{1}+ x _{2}\right|$ is equal to $......$

A

$19$

B

$18$

C

$17$

D

$20$

(JEE MAIN-2022)

Solution

$T_{1}: y=m x \pm \sqrt{4 m^{2}+9}$

And $T_{2}: y=m x \pm \sqrt{42 m^{2}-13}$

So, $4\,m^{2}+9=42 m^{2}-143$

$38\,m ^{2}=152$

$m=\pm 2$

$c=\pm 5$

For given tangent not pass through $4^{\text {th }}$ quadrant

$T: y=2 x+5$

Now, comparing with $\frac{ xx _{1}}{4}+\frac{ yy _{1}}{9}=1$

We get, $\frac{x_{1}}{8}=-\frac{1}{5} \Rightarrow x_{1}=-\frac{8}{5}$

$\frac{ xx _{2}}{42}-\frac{ yy _{2}}{143}=1$

$2 x-y=-5$ we have

$x _{2}=-\frac{84}{5}$

So, $\left|2 x _{1}+ x _{2}\right|=\left|\frac{-100}{5}\right|=20$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.