वक्रों $C _1: \frac{ x ^2}{4}+\frac{ y ^2}{9}=1$ तथा $C _2: \frac{ x ^2}{42}-\frac{ y ^2}{143}=1$ की एक ऊभयनिष्ठ स्पर्श रेखा $T$ चतुर्थ चतुर्थाश से होकर नहीं जाती। यदि $T$ वक्र $C _1$ को $\left( x _1, y _1\right)$ पर तथा वक्र $C _2$ को $\left( x _2, y _2\right)$ पर स्पर्श करती है, तो $\left|2 x _1+ x _2\right|$ बराबर है $..........$
$19$
$18$
$17$
$20$
सरल रेखाओं $\frac{x}{a} - \frac{y}{b} = m$ तथा $\frac{x}{a} + \frac{y}{b} = \frac{1}{m}$ के प्रतिच्छेद बिन्दु का बिन्दुपथ होगा
यदि रेखा $y = 2x + \lambda $ अतिपरवलय $36{x^2} - 25{y^2} = 3600$ की स्पर्श रेखा हो तो $\lambda = $
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
नाभियाँ $(\pm 3 \sqrt{5}, 0),$ नाभिलंब जीवा की लंबाई $8$ है।
माना एक दीर्घवृत्त $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ की उत्केन्द्रता, अतिपरवलय $2 x^2-2 y^2=1$ की उत्केन्द्रता की व्युत्क्रम (reciprocal) है। यदि दीर्घवृत्त, अतिपरवलय को लंबवत काटता है, तो दीर्घवृत्त की नाभिलंब जीवा की लंबाई का वर्ग है__________
रेखा $lx + my + n = 0$ अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श रेखा होगी, यदि