10-2. Parabola, Ellipse, Hyperbola
normal

$T$ એ  વક્ર $C_{1}: \frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ અને $C_{2}: \frac{x^{2}}{42}-\frac{y^{2}}{143}=1$ નો સામાન્ય સ્પર્શક છે જે ચોથા ચરણમાંથી પસાર નથી થતો. જો $T$ એ $C _{1}$ ને ( $\left.x _{1}, y _{1}\right)$ અને $C _{2}$ ને $\left( x _{2}, y _{2}\right)$ આગળ સ્પર્શે છે તો $\left|2 x _{1}+ x _{2}\right|$ ની કિમંત  $......$ થાય.

A

$19$

B

$18$

C

$17$

D

$20$

(JEE MAIN-2022)

Solution

$T_{1}: y=m x \pm \sqrt{4 m^{2}+9}$

And $T_{2}: y=m x \pm \sqrt{42 m^{2}-13}$

So, $4\,m^{2}+9=42 m^{2}-143$

$38\,m ^{2}=152$

$m=\pm 2$

$c=\pm 5$

For given tangent not pass through $4^{\text {th }}$ quadrant

$T: y=2 x+5$

Now, comparing with $\frac{ xx _{1}}{4}+\frac{ yy _{1}}{9}=1$

We get, $\frac{x_{1}}{8}=-\frac{1}{5} \Rightarrow x_{1}=-\frac{8}{5}$

$\frac{ xx _{2}}{42}-\frac{ yy _{2}}{143}=1$

$2 x-y=-5$ we have

$x _{2}=-\frac{84}{5}$

So, $\left|2 x _{1}+ x _{2}\right|=\left|\frac{-100}{5}\right|=20$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.