Gujarati
2. Electric Potential and Capacitance
medium

A container has a base of $50 \mathrm{~cm} \times 5 \mathrm{~cm}$ and height $50 \mathrm{~cm}$, as shown in the figure. It has two parallel electrically conducting walls each of area $50 \mathrm{~cm} \times 50 \mathrm{~cm}$. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant $3$ at a uniform rate of $250 \mathrm{~cm}^3 \mathrm{~s}^{-1}$. What is the value of the capacitance of the container after $10$ seconds? [Given: Permittivity of free space $\epsilon_0=9 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]

A

$27 \mathrm{pF}$

B

$63 \mathrm{pF}$

C

$81 \mathrm{pF}$

D

$135 \mathrm{pF}$

(IIT-2023)

Solution

$\text { In } \mathrm{t}=10 \mathrm{sec} \text { volume of liquid is }$

$\mathrm{V}=2500 \mathrm{cc}$

$\mathrm{h}=\frac{2500}{50 \times 5}=10 \mathrm{~cm}$

$\mathrm{C}_{\mathrm{d}}=\frac{\mathrm{A}_{\mathrm{d}} \varepsilon_0 \mathrm{k}}{\mathrm{d}}$

$=\frac{50 \times 10^{-2} \times 10 \times 10^{-2} \varepsilon_0 \times 3}{5 \times 10^{-2}}=3 \varepsilon_0$

$\mathrm{C}_{\mathrm{a}}=\frac{\mathrm{A}_{\mathrm{a}} \varepsilon_0}{\mathrm{~d}}=\frac{50 \times 10^{-2} \times 40 \times 10^{-2} \varepsilon_0}{5 \times 10^{-2}}=4 \varepsilon_0$

$\mathrm{C}=\mathrm{C}_{\mathrm{a}}+\mathrm{C}_{\mathrm{d}}=7 \varepsilon_0$

$=7 \times 9 \times 10^{-12}=63 \mathrm{Pf}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.