A cube is placed inside an electric field, $\overrightarrow{{E}}=150\, {y}^{2}\, \hat{{j}}$. The side of the cube is $0.5 \,{m}$ and is placed in the field as shown in the given figure. The charge inside the cube is $.....\times 10^{-11} {C}$
$3.8$
$8.3$
$0.38$
$830$
Figure shows the electric lines of force emerging from a charged body. If the electric field at $A$ and $B$ are ${E_A}$ and ${E_B}$ respectively and if the displacement between $A$ and $B$ is $r$ then
Electric field in a region is uniform and is given by $\vec{E}=a \hat{i}+b \hat{j}+c \hat{k}$. Electric flux associated with a surface of area $\vec{A}=\pi R^2 \hat{i}$ is
An electron revolves around an infinite cylindrical wire having uniform linear change density $2 \times 10^{-8}\,Cm ^{-1}$ in circular path under the influence of attractive electrostatic field as shown in the figure. The velocity of electron with which it is revolving is $.........\times 10^6\,ms ^{-1}$. Given mass of electron $=9 \times 10^{-31}\,kg$
A charge $Q$ is situated at the comer of a cube, the electric flux passed through all the six faces of the cube is
The electric field in a certain region is acting radially outward and is given by $E =Ar.$ A charge contained in a sphere of radius $'a'$ centred at the origin of the field, will be given by