11.Thermodynamics
medium

A cyclic process for $1\, mole$ of an ideal gas is shown in figure in the $V-T,$ diagram. The work done in $AB, BC$ and $CA$ respectively

A

$0,\,R{T_2}\ln \left( {\frac{{{V_1}}}{{{V_2}}}} \right)\,,\,R\,({T_1} - {T_2})$

B

$R({T_1} - {T_2}),\,0,\,R{T_1}\ln \frac{{{V_1}}}{{{V_2}}}$

C

$0,\,R{T_2}\ln \left( {\frac{{{V_2}}}{{{V_1}}}} \right)\,,\,R\,({T_1} - {T_2})$

D

$0,\,R{T_2}\ln \left( {\frac{{{V_2}}}{{{V_1}}}} \right)\,,\,R\,({T_2} - {T_1})$

Solution

(c) Process $AB$ is isochoric, $\therefore$   ${W_{AB}} = P\,\Delta V = 0$ 

Process $BC$ is isothermal $\therefore$  ${W_{BC}} = R{T_2}.\ln \left( {\frac{{{V_2}}}{{{V_1}}}} \right)$ 

Process $CA$ is isobaric 

$\therefore  {W_{CA}} = – \,P\Delta V$$ = – \,R\Delta T$$ = – \,R({T_1} – {T_2})$$ = R({T_2} – {T_1})$

(Negative sign is taken because of compression)

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.