- Home
- Standard 11
- Physics
A cyclic process for $1\, mole$ of an ideal gas is shown in figure in the $V-T,$ diagram. The work done in $AB, BC$ and $CA$ respectively

$0,\,R{T_2}\ln \left( {\frac{{{V_1}}}{{{V_2}}}} \right)\,,\,R\,({T_1} - {T_2})$
$R({T_1} - {T_2}),\,0,\,R{T_1}\ln \frac{{{V_1}}}{{{V_2}}}$
$0,\,R{T_2}\ln \left( {\frac{{{V_2}}}{{{V_1}}}} \right)\,,\,R\,({T_1} - {T_2})$
$0,\,R{T_2}\ln \left( {\frac{{{V_2}}}{{{V_1}}}} \right)\,,\,R\,({T_2} - {T_1})$
Solution
(c) Process $AB$ is isochoric, $\therefore$ ${W_{AB}} = P\,\Delta V = 0$
Process $BC$ is isothermal $\therefore$ ${W_{BC}} = R{T_2}.\ln \left( {\frac{{{V_2}}}{{{V_1}}}} \right)$
Process $CA$ is isobaric
$\therefore {W_{CA}} = – \,P\Delta V$$ = – \,R\Delta T$$ = – \,R({T_1} – {T_2})$$ = R({T_2} – {T_1})$
(Negative sign is taken because of compression)