A data consists of $n$ observations
${x_1},{x_2},......,{x_n}.$ If $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}} = 9n$ and $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}} = 5n,$ then the standard deviation of this data is
$5$
$\sqrt 5$
$\sqrt 7$
$2$
Let $n \geq 3$. A list of numbers $0 < x_1 < x_2 < \ldots < x_n$ has mean $\mu$ and standard deviation $\sigma$. A new list of numbers is made as follows: $y_1=0, y_2=x_2, \ldots, x_{n-1}$ $=x_n-1, y_n=x_1+x_n$. The mean and the standard deviation of the new list are $\hat{\mu}$ and $\hat{\sigma}$. Which of the following is necessarily true?
Let $\mathrm{X}$ be a random variable with distribution.
$\mathrm{x}$ | $-2$ | $-1$ | $3$ | $4$ | $6$ |
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ | $\frac{1}{5}$ | $\mathrm{a}$ | $\frac{1}{3}$ | $\frac{1}{5}$ | $\mathrm{~b}$ |
If the mean of $X$ is $2.3$ and variance of $X$ is $\sigma^{2}$, then $100 \sigma^{2}$ is equal to :
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
The mean and standard deviation of six observations are $8$ and $4,$ respectively. If each observation is multiplied by $3,$ find the new mean and new standard deviation of the resulting observations.
Let $X _{1}, X _{2}, \ldots, X _{18}$ be eighteen observations such that $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36 \quad$ and $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90,$ where $\alpha$ and $\beta$ are distinct real numbers. If the standard deviation of these observations is $1,$ then the value of $|\alpha-\beta|$ is ...... .