A data consists of $n$ observations
${x_1},{x_2},......,{x_n}.$ If $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}} = 9n$ and $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}} = 5n,$ then the standard deviation of this data is
$5$
$\sqrt 5$
$\sqrt 7$
$2$
Find the mean and variance for the data
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
Find the mean and variance for the following frequency distribution.
Classes | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
Frequencies | $5$ | $8$ | $15$ | $16$ | $6$ |
The mean of $5$ observations is $4.4$ and their variance is $8.24$. If three observations are $1, 2$ and $6$, the other two observations are
The outcome of each of $30$ items was observed; $10$ items gave an outcome $\frac{1}{2} - d$ each, $10$ items gave outcome $\frac {1}{2}$ each and the remaining $10$ items gave outcome $\frac{1}{2} + d$ each. If the variance of this outcome data is $\frac {4}{3}$ then $\left| d \right|$ equals
Let the observations $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ satisfy the equations, $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ and $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ If $\mu$ and $\lambda$ are the mean and the variance of the observations, $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ then the ordered pair $(\mu, \lambda)$ is equal to :