13.Statistics
hard

A data consists of $n$ observations

${x_1},{x_2},......,{x_n}.$ If $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}}  = 9n$ and $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}}  = 5n,$ then the standard deviation of this data is

A

$5$

B

$\sqrt 5$

C

$\sqrt 7$

D

$2$

(JEE MAIN-2019)

Solution

${\sum {\left( {{x_i} + 1} \right)} ^2} = 9n\,\,\,\,\,\,….\left( 1 \right)$

${\sum {\left( {{x_i} – 1} \right)} ^2} = 5n\,\,\,\,\,\,….\left( 2 \right)$

$\left( 1 \right) + \left( 2 \right) \Rightarrow \sum {\left( {x_i^2 + 1} \right)}  = 7n$

$ \Rightarrow \frac{{\sum {x_i^2} }}{n} = 6$

$\left( 1 \right).\left( 2 \right) \Rightarrow 4\sum {{x_i}}  = 4n$

$ \Rightarrow \sum {{x_i} = n} $

$ \Rightarrow \frac{{\sum {{x_i}} }}{n} = 1$

$ \Rightarrow $ variance $=6-1=5$

$ \Rightarrow $standard diviation $ = \sqrt 5 $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.