Let $9 < x_1 < x_2 < \ldots < x_7$ be in an $A.P.$ with common difference $d$. If the standard deviation of $x_1, x_2 \ldots$, $x _7$ is $4$ and the mean is $\overline{ x }$, then $\overline{ x }+ x _6$ is equal to:
$18\left(1+\frac{1}{\sqrt{3}}\right)$
$34$
$2\left(9+\frac{8}{\sqrt{7}}\right)$
$25$
The mean and variance of the marks obtained by the students in a test are $10$ and $4$ respectively. Later, the marks of one of the students is increased from $8$ to $12$ . If the new mean of the marks is $10.2.$ then their new variance is equal to :
Find the variance and standard deviation for the following data:
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
What is the standard deviation of the following series
class |
0-10 |
10-20 |
20-30 |
30-40 |
Freq |
1 |
3 |
4 |
2 |
The $S.D$. of the first $n$ natural numbers is
Mean and variance of a set of $6$ terms is $11$ and $24$ respectively and the mean and variance of another set of $3$ terms is $14$ and $36$ respectively. Then variance of all $9$ terms is equal to