એક પાસાની બે બાજુઓમાંથી પ્રત્યેક પર સંખ્યા $“1”$ દર્શાવેલ છે, ત્રણ બાજુઓમાં પ્રત્યેક પર સંખ્યા $“2”$ દર્શાવેલ છે અને એક બાજુ પર સંખ્યા $“3”$ છે. જો આ પાસાને એકવાર ફેંકવામાં આવે તો નીચે આપેલ શોધો : $P (2)$
Total number of faces $=6$
Number of faces with number $^{\prime} 2^{\prime}=3$
$\therefore P(2)=\frac{3}{6}=\frac{1}{2}$
ત્રણ એકસમાન પાસા નાંખવામાં આવે છે તો તે દરેકમાં સમાન સંખ્યા દેખાવવાની સંભાવના કેટલી થાય ?
ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
એક પણ છાપ નહિ.
ત્રણ વ્યક્તિઓને માટે ત્રણ પત્ર લખાઈ ગયા છે અને દરેક માટે સરનામું લખેલ એક પરબીડિયાં છે. પત્રોને યાદચ્છિક રીતે પરબીડિયામાં મૂક્યા છે. પ્રત્યેક પરબીડિયામાં એક જ પત્ર છે. ઓછામાં ઓછો એક પત્ર પોતાના સાચા પરબીડિયામાં મૂકાયો છે તેની સંભાવના શોધો.
જો $E$ અને $F$ એ ઘટનાઓ છે કે જેથી $P\,(E) \le P\,(F)$ અને $P\,(E \cap F) > 0,$ તો . . .
નીચે દર્શાવેલ પ્રયોગ માટે નિદર્શાવકાશ દર્શાવો : એક સિક્કાને ત્રણ વાર ઉછાળવામાં આવે છે.