ધારો કે બે ધન પુર્ણાકો ગુણાકારની મહત્તમ કિંમત $M$ છે, જ્યારે તેમનો સરવાળો $66$ છે. ધારો કે નિદર્શાવકાશ $S=\left\{x \in Z : x(66-x) \geq \frac{5}{9} M\right\}$ અને ઘટના $A =\{x \in S : x$ એ $3$ નો ગુણિત છે $\}$ તો $P ( A )=...........$
$\frac{15}{44}$
$\frac{1}{3}$
$\frac{1}{5}$
$\frac{7}{22}$
કાગળની ચાર ચબરખી પર $1, 2, 3$ અને $4$ સંખ્યાઓ લખી છે. આ ચબરખીને એક ડબામાં મૂકીને સારી રીતે મિશ્ર કરી દીધી છે. એક વ્યક્તિ ડબામાંથી પાછી મૂકયા વગર એક પછી એક બે ચબરખીઓ કાઢે છે. આ પ્રયોગનો નિદર્શાવકાશ વર્ણવો.
ગણિતનો એક દાખલો ત્રણ વિર્ધાર્થીં $A, B$ અને $C$ ને આપવામાં આવે છે. તેને ઉકેલવાની સંભાવના અનુક્રમે $1/2, 1/3, 1/4 $ હોય, તો દાખલો ઉકેલવાની સંભાવના કેટલી થાય ?
એક માણસ પાસની રમતમાં જો $5$ અથવા $6$ તો તે $Rs $ $.\,100$ જીતે છે અને જો તેને બાકી કોઈપણ અંક આવે તો તે $Rs.\,50$ ગુમાવે છે .જો તે નક્કી કરે છે કે તે જ્યાં સુધી પાંચ કે છ ન આવે ત્યાં સુધી પાસા ઉછાળે છે અથવા મહતમ ત્રણ પ્રયાશ કરે તો તેનો અપેક્ષિત નફો કે નુકશાન મેળવો.
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
નીચે આપેલ ઘટનાઓ વર્ણવો : $A$ પરંતુ $B$ નહિ
$60$ વિધાર્થીના એક વર્ગમાં $40$ ને $NCC$ છે અને $30$ ને $NSS$ અને $20$ બંને છે . જો એક વિધાર્થીની યાર્દચ્છિક પસંદગી કરતાં તેને $NCC$ કે $NSS$ પૈકી એકપણ ન હોય તેની સંભાવના મેળવો.