A disc of radius $2\; \mathrm{m}$ and mass $100\; \mathrm{kg}$ rolls on a horizontal floor. Its centre of mass has speed of $20\; \mathrm{cm} / \mathrm{s} .$ How much work is needed to stop it?

  • [NEET 2019]
  • A

    $3 \mathrm{J}$

  • B

    $30\; \mathrm{kJ}$

  • C

    $2 \;J$

  • D

    $1\; \mathrm{J}$

Similar Questions

Two discs of same moment of inertia rotating about their regular axis passing through centre and perpendicular to the plane of disc with angular velocities $\omega_1$ and $\omega_2$ They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is 

  • [NEET 2017]

A  solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy $(K_t)$ as well as rotational kinetic energy $(K_r)$ simultaneously.  The ratio $K_t : (K_t + K_r)$ for the sphere is

  • [AIPMT 1991]

A hollow sphere is rolling on a plane surface about its axis of symmetry. The ratio of rotational kinetic energy to its total kinetic energy is $\frac{x}{5}$. The value of $x$ is________.

  • [JEE MAIN 2024]

If the angular momentum of a rotating body is increased by $200\ \%$, then its kinetic energy of rotation will be increased by .......... $\%$

A uniform solid cylinder of mass $M = 3\  kg$ and radius $R = 10\  cm$ is connected about an axis through the cnetre of the cylinder to a horizontal spring with spring constant $8\ N/m$.The cylinder is pulled back, stretching the spring $1\,m$ from equilibrium.When released, the cylinder rolls without slipping. What is the speed of the center of th ecylinder when it returns to equilibrium? .................. $m/s$