એક સમતોલ સિક્કા અને એક સમતોલ પાસાને ઉછાળવામાં આવે છે, ધારો કે ઘટના $A$, ‘સિકકા પર છાપ મળે' તે અને ઘટના $B$ ‘પાસા પર $3$ મળે તે દર્શાવે છે. ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે નહિ તે ચકાસો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

If a fair coin and an unbiased die are tossed, then the sample space $S$ is given by,

$S=\left\{\begin{array}{l}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6) \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$

Let $A:$ Head appears on the coin

$A=\{(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6)\}$

$\Rightarrow $ $P(A)=\frac{6}{12}=\frac{1}{2}$

$\mathrm{B}: 3$ on die $=\{(\mathrm{H}, 3),(\mathrm{T}, 3)\}$

$P(B)=\frac{2}{12}=\frac{1}{6}$

$\therefore $ $A \cap B=\{(H, 3)\}$

$P(A \cap B)=\frac{1}{12}$

$P(A)\, P(B)=\frac{1}{2} \times \frac{1}{6}=P(A \cap B)$

Therefore, $A$ and $B$ are independent events.

Similar Questions

બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના $0.05$ અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના $0.10$ છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના $0.02 $ છે. નીચેની ઘટનાની સંભાવના શોધો : બંનેમાંથી ઓછામાં ઓછી એક વ્યક્તિ પરીક્ષામાં પાસ નહિ થાય.

ઘટનાઓ $A$ અને $B$ એવા પ્રકારની છે કે $P(A) = 0.42, P(B) = 0.48$ અને $P(A$ અને $B) = 0.16$.$ P(A-$ અથવા $B$) શોધો.

બે ઘટનાઓ $A$ અને $B$ માટે,$P\,(A \cap B) = $

  • [IIT 1988]

ધરોકે $A, B,$ અને $C$ એ ઘટના ઓ છે કે જેથી $ P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$  તો   $P\,(A + B) = .....$

ધારો કે, $A, B, C$ એ  $3$ નિરપેક્ષ ઘટનાઓ એવી છે કે જેથી $P(A)\,\, = \,\,\frac{1}{3}\,,\,\,P(B)\,\, = \,\,\frac{1}{2}\,,\,\,P(C)\,\, = \,\,\frac{1}{4}\,.$ $3$ ઘટનાઓ પૈકી ચોક્કસ $2$ ઘટનાઓ બનવાની સંભાવના શોધો.