એક સમતોલ સિક્કા અને એક સમતોલ પાસાને ઉછાળવામાં આવે છે, ધારો કે ઘટના $A$, ‘સિકકા પર છાપ મળે' તે અને ઘટના $B$ ‘પાસા પર $3$ મળે તે દર્શાવે છે. ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે નહિ તે ચકાસો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

If a fair coin and an unbiased die are tossed, then the sample space $S$ is given by,

$S=\left\{\begin{array}{l}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6) \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$

Let $A:$ Head appears on the coin

$A=\{(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6)\}$

$\Rightarrow $ $P(A)=\frac{6}{12}=\frac{1}{2}$

$\mathrm{B}: 3$ on die $=\{(\mathrm{H}, 3),(\mathrm{T}, 3)\}$

$P(B)=\frac{2}{12}=\frac{1}{6}$

$\therefore $ $A \cap B=\{(H, 3)\}$

$P(A \cap B)=\frac{1}{12}$

$P(A)\, P(B)=\frac{1}{2} \times \frac{1}{6}=P(A \cap B)$

Therefore, $A$ and $B$ are independent events.

Similar Questions

જો ત્રણ પેટી માં રહેલા દડોઓ  $3$ સફેદ અને $1$ કાળો, $2$ સફેદ અને $2$ કાળો, $1$ સફેદ અને  $3$ કાળો દડો છે. જો એક દડો યાર્દચ્છિક રીતે દરેક પેટીમાંથી પસંદ કરવામાં આવે છે તો પસંદ થયેલ દડોઓ  $2$ સફેદ અને  $1$ કાળો હોય તેની સંભાવના મેળવો.

  • [IIT 1998]

ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ અને  $P (A -$ નહી અથવા $B-$ નહી $) =$ $\frac {1}{4}$. $A$ અને $B$ નિરપેક્ષ છે કે નહિ ?

જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.

ત્રણ વ્યક્તિ  $P, Q$ અને $R$ એ સ્વતંત્ર રીતે એક નિશાન તકે છે . જો તેઓ નિશાન તાકી શકે તેની સંભાવના અનુક્રમે $\frac{3}{4},\frac{1}{2}$ અને  $\frac{5}{8}$ હોય તો $P$ અથવા $Q$ નિશાન તાકી શકે પરંતુ $R$ તાકી ન શકે તેની સંભાવના મેળવો.

  • [JEE MAIN 2017]

નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો : 

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$\frac {1}{3}$ $\frac {1}{5}$ $\frac {1}{15}$  ........