એક સમતોલ સિક્કા અને એક સમતોલ પાસાને ઉછાળવામાં આવે છે, ધારો કે ઘટના $A$, ‘સિકકા પર છાપ મળે' તે અને ઘટના $B$ ‘પાસા પર $3$ મળે તે દર્શાવે છે. ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે નહિ તે ચકાસો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

If a fair coin and an unbiased die are tossed, then the sample space $S$ is given by,

$S=\left\{\begin{array}{l}(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6) \\ (T, 1),(T, 2),(T, 3),(T, 4),(T, 5),(T, 6)\end{array}\right\}$

Let $A:$ Head appears on the coin

$A=\{(H, 1),(H, 2),(H, 3),(H, 4),(H, 5),(H, 6)\}$

$\Rightarrow $ $P(A)=\frac{6}{12}=\frac{1}{2}$

$\mathrm{B}: 3$ on die $=\{(\mathrm{H}, 3),(\mathrm{T}, 3)\}$

$P(B)=\frac{2}{12}=\frac{1}{6}$

$\therefore $ $A \cap B=\{(H, 3)\}$

$P(A \cap B)=\frac{1}{12}$

$P(A)\, P(B)=\frac{1}{2} \times \frac{1}{6}=P(A \cap B)$

Therefore, $A$ and $B$ are independent events.

Similar Questions

જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.

ધારો કે ઘટનાઓ $A$ અને $B $ માટે, $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ અને $P\left( {\bar A} \right) = \frac{1}{4}$ છે,તો ઘટનાઓ $A$ અને $B$. . . . . .

  • [AIEEE 2005]

$A$ અને $B$ બે ઘટનાઓ એવા પ્રકારની છે કે $P(A) = 0.54, P(B) = 0.69$ અને$P(A \cap B)=0.35$  $P \left( A \cap B ^{\prime}\right)$ શોધો.  

જો $ P(A) = 0.25, P(B)= 0.50 $ અને  $P(A \,\cap\,B) = 0.14 $ હોય, તો $P(A\,\, \cap \,\,\overline B )$બરાબર શું થાય ?

એક પાસાને ફેંકવામાં આવે છે. જો ઘટના $E$ એ પાસા પર મળતી સંખ્યા $3$ નો ગુણિત છે' અને ઘટના -$F$ ‘પાસા પર મળતી સંખ્યા યુગ્મ છે', તો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ છે કે નહિ તે નક્કી કરો.