એક ખેડૂત પુન:વેચાણનું ટ્રેક્ટર $Rs$ $12,000 $ માં ખરીદે છે. તે $Rs$ $ 6000$ રોકડા ચૂકવે છે અને બાકીની રકમ $Rs$ $500$ ના વાર્ષિક હપતામાં અને $12 \%$ વ્યાજે ચૂકવે છે, તો તેણે ટ્રેક્ટરની શું કિંમત ચૂકવી હશે? 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given farmer pays $Rs.$ $6000$ in cash.

Therefore, unpaid amount $=$ $Rs.$ $12000-$ $Rs.$ $6000=$ $Rs.$ $6000$

According to the given condition, the interest paid annually is

$12 \%$ of $6000,12 \%$ of $5500,12 \%$ of $5000 \ldots \ldots 12 \%$ of $500$

Thus, total interest to be paid

$=12 \%$ of $6000+12 \%$ of $5500+12 \%$ of $5000+\ldots \ldots+12 \%$ of $500$

$=12 \%$ of $(6000+5500+5000+\ldots .+500)$

$=12 \%$ of $(500+1000+1500+\ldots \ldots+6000)$

Now, the series $500,1000,1500 \ldots 6000$ is an $A.P.$ with both the first term and common difference equal to $500 .$

Let the number of terms of the $A.P.$ be $n$

$\therefore 6000=500+(n-1) 500$

$\Rightarrow 1+(n-1)=12$

$\Rightarrow n=12$

$\therefore$ Sum of the $A.P.$

$=\frac{12}{2}[2(500)+(12-1)(500)]=6[1000+5500]=6(6500)=39000$

Thus, total interest to be paid

$=12 \%$ of $(500+1000+1500+\ldots . .+6000)$

$=12 \%$ of $39000= Rs .4680$

Thus, cost of tractor $=( Rs .12000+ Rs .4680)= Rs .16680$

Similar Questions

અચળ $P$ અને $Q$ માટે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો $n P+\frac{1}{2} n(n-1) Q$ છે. તો સામાન્ય તફાવત શોધો.

ધારો કે $3, 6. 9, 12,$ .. $(78$ પદો સુધી) અને $5, 9, 13,$ $17, \ldots(59$ પદો સુધી) બે શ્રેણીઓ છે.,તો બંને શ્રેણીઓનાં સામાન્ય પદોનો સરવાળો $\dots\dots$છે.

  • [JEE MAIN 2022]

ધારો કે ${a_1},{a_2},\;.\;.\;.\;.,{a_{49}}$ સમાંતર શ્રેણીમાં છે તથા $\mathop \sum \limits_{k = 0}^{12} {a_{4k + 1}} = 416$ અને ${a_9} + {a_{43}} = 66$. જો $a_1^2 + a_2^2 + \ldots + a_{17}^2 = 140m,$ તો $m = \;\;..\;.\;.\;.\;$

  • [JEE MAIN 2018]

સમાંતર શ્રેણીના $p$ માં પદના $p$ ગણા અને $q$ મા પદના $q$ ગણા એ બંને સમાન હોય, તો આ શ્રેણીનું $(p + q)$ મું પદ........ છે.

જો $a,b,c$ સમાંતર શ્રેણીમાં હોય, તો $\frac{1}{{\sqrt b \, + \,\sqrt c }},\,\frac{1}{{\sqrt c  + \,\sqrt a }},\,\frac{1}{{\sqrt a \, + \,\sqrt b }}\,\, = \,\,......$