એક ખેડૂત પુન:વેચાણનું ટ્રેક્ટર $Rs$ $12,000 $ માં ખરીદે છે. તે $Rs$ $ 6000$ રોકડા ચૂકવે છે અને બાકીની રકમ $Rs$ $500$ ના વાર્ષિક હપતામાં અને $12 \%$ વ્યાજે ચૂકવે છે, તો તેણે ટ્રેક્ટરની શું કિંમત ચૂકવી હશે?
It is given farmer pays $Rs.$ $6000$ in cash.
Therefore, unpaid amount $=$ $Rs.$ $12000-$ $Rs.$ $6000=$ $Rs.$ $6000$
According to the given condition, the interest paid annually is
$12 \%$ of $6000,12 \%$ of $5500,12 \%$ of $5000 \ldots \ldots 12 \%$ of $500$
Thus, total interest to be paid
$=12 \%$ of $6000+12 \%$ of $5500+12 \%$ of $5000+\ldots \ldots+12 \%$ of $500$
$=12 \%$ of $(6000+5500+5000+\ldots .+500)$
$=12 \%$ of $(500+1000+1500+\ldots \ldots+6000)$
Now, the series $500,1000,1500 \ldots 6000$ is an $A.P.$ with both the first term and common difference equal to $500 .$
Let the number of terms of the $A.P.$ be $n$
$\therefore 6000=500+(n-1) 500$
$\Rightarrow 1+(n-1)=12$
$\Rightarrow n=12$
$\therefore$ Sum of the $A.P.$
$=\frac{12}{2}[2(500)+(12-1)(500)]=6[1000+5500]=6(6500)=39000$
Thus, total interest to be paid
$=12 \%$ of $(500+1000+1500+\ldots . .+6000)$
$=12 \%$ of $39000= Rs .4680$
Thus, cost of tractor $=( Rs .12000+ Rs .4680)= Rs .16680$
જો $a$ અને $100$ ની વચ્ચે $n$ સમાંતર મધ્યકો મૂકવામાં આવે કે જેથી પ્રથમ મધ્યકનો અંતિમ મધ્યક સાથેનો ગુણોત્તર $1: 7$ અને $a + n =33$ થાય, તો $n$ ની કિમત ...............છે.
જો $(b+c),(c+a),(a+b)$ એ સ્વરિત શ્રેણીમાં હોય તો $a^2,b^2,c^2$ એ ........ શ્રેણીમાં છે
જો $S_n$ એ સમાંતર શ્રેણીના પ્રથમ $n$ પદનો સરવાળો દર્શાવે છે અને $S_4 = 16$ અને $S_6 = -48$, હોય તો $S_{10}$ મેળવો.
શ્રેણી $3 +7 + 1 1 + 15+ ... ......$અને $1 +6+ 11 + 16+ ......$ના પ્રથમ $20$ સામાન્ય પદોનો સરવાળો મેળવો.
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=n \frac{n^{2}+5}{4}$