A farmer buys a used tractor for $Rs$ $12000 .$ He pays $Rs$ $6000$ cash and agrees to pay the balance in annual instalments of $Rs$ $500$ plus $12 \%$ interest on the unpaid amount. How much will the tractor cost him?
It is given farmer pays $Rs.$ $6000$ in cash.
Therefore, unpaid amount $=$ $Rs.$ $12000-$ $Rs.$ $6000=$ $Rs.$ $6000$
According to the given condition, the interest paid annually is
$12 \%$ of $6000,12 \%$ of $5500,12 \%$ of $5000 \ldots \ldots 12 \%$ of $500$
Thus, total interest to be paid
$=12 \%$ of $6000+12 \%$ of $5500+12 \%$ of $5000+\ldots \ldots+12 \%$ of $500$
$=12 \%$ of $(6000+5500+5000+\ldots .+500)$
$=12 \%$ of $(500+1000+1500+\ldots \ldots+6000)$
Now, the series $500,1000,1500 \ldots 6000$ is an $A.P.$ with both the first term and common difference equal to $500 .$
Let the number of terms of the $A.P.$ be $n$
$\therefore 6000=500+(n-1) 500$
$\Rightarrow 1+(n-1)=12$
$\Rightarrow n=12$
$\therefore$ Sum of the $A.P.$
$=\frac{12}{2}[2(500)+(12-1)(500)]=6[1000+5500]=6(6500)=39000$
Thus, total interest to be paid
$=12 \%$ of $(500+1000+1500+\ldots . .+6000)$
$=12 \%$ of $39000= Rs .4680$
Thus, cost of tractor $=( Rs .12000+ Rs .4680)= Rs .16680$
If ${a_1} = {a_2} = 2,\;{a_n} = {a_{n - 1}} - 1\;(n > 2)$, then ${a_5}$ is
When $9^{th}$ term of $A.P$ is divided by its $2^{nd}$ term then quotient is $5$ and when $13^{th}$ term is divided by $6^{th}$ term then quotient is $2$ and Remainder is $5$ then find first term of $A.P.$
If $^n{C_4},{\,^n}{C_5},$ and ${\,^n}{C_6},$ are in $A.P.,$ then $n$ can be
If $a_1, a_2, a_3, …….$ are in $A.P.$ such that $a_1 + a_7 + a_{16} = 40$, then the sum of the first $15$ terms of this $A.P.$ is
A number is the reciprocal of the other. If the arithmetic mean of the two numbers be $\frac{{13}}{{12}}$, then the numbers are