A farmer buys a used tractor for $Rs$ $12000 .$ He pays $Rs$ $6000$ cash and agrees to pay the balance in annual instalments of $Rs$ $500$ plus $12 \%$ interest on the unpaid amount. How much will the tractor cost him?
It is given farmer pays $Rs.$ $6000$ in cash.
Therefore, unpaid amount $=$ $Rs.$ $12000-$ $Rs.$ $6000=$ $Rs.$ $6000$
According to the given condition, the interest paid annually is
$12 \%$ of $6000,12 \%$ of $5500,12 \%$ of $5000 \ldots \ldots 12 \%$ of $500$
Thus, total interest to be paid
$=12 \%$ of $6000+12 \%$ of $5500+12 \%$ of $5000+\ldots \ldots+12 \%$ of $500$
$=12 \%$ of $(6000+5500+5000+\ldots .+500)$
$=12 \%$ of $(500+1000+1500+\ldots \ldots+6000)$
Now, the series $500,1000,1500 \ldots 6000$ is an $A.P.$ with both the first term and common difference equal to $500 .$
Let the number of terms of the $A.P.$ be $n$
$\therefore 6000=500+(n-1) 500$
$\Rightarrow 1+(n-1)=12$
$\Rightarrow n=12$
$\therefore$ Sum of the $A.P.$
$=\frac{12}{2}[2(500)+(12-1)(500)]=6[1000+5500]=6(6500)=39000$
Thus, total interest to be paid
$=12 \%$ of $(500+1000+1500+\ldots . .+6000)$
$=12 \%$ of $39000= Rs .4680$
Thus, cost of tractor $=( Rs .12000+ Rs .4680)= Rs .16680$
If the first term of an $A.P.$ is $3$ and the sum of its first $25$ terms is equal to the sum of its next $15$ terms, then the common difference of this $A.P.$ is :
If $< {a_n} >$ is an $A.P$. and $a_1 + a_4 + a_7 + .......+ a_{16} = 147$, then $a_1 + a_6 + a_{11} + a_{16}$ is equal to
The Fibonacci sequence is defined by
$1 = {a_1} = {a_2}{\rm{ }}$ and ${a_n} = {a_{n - 1}} + {a_{n - 2}},n\, > \,2$
Find $\frac{a_{n+1}}{a_{n}},$ for $n=1,2,3,4,5$
If the sum of first $n$ terms of an $A.P.$ be equal to the sum of its first $m$ terms, $(m \ne n)$, then the sum of its first $(m + n)$ terms will be
Write the first three terms in each of the following sequences defined by the following:
$a_{n}=2 n+5$