સમાંતર શ્રેણી $25,22,19, \ldots \ldots .$ નાં નિશ્ચિત સંખ્યાના શરૂઆતના પદનો સરવાળો $116$ હોય તો છેલ્લું પદ શોધો.
Let the sum of $n$ terms of the given $A.P.$ be $116$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here, $a=25$ and $d=22-25=-3$
$\therefore S_{n}=\frac{n}{2}[2 \times 25+(n-1)(-3)]$
$\Rightarrow 116=\frac{n}{2}[50-3 n+3]$
$\Rightarrow 232=n(53-3 n)=53 n-3 n^{2}$
$\Rightarrow 3 n^{2}-53 n+232=0$
$\Rightarrow 3 n^{2}-24 n-29 n+232=0$
$\Rightarrow 3 n(n-8)-29(n-8)=0$
$\Rightarrow(n-8)(3 n-29)=0$
$\Rightarrow n=8$ or $n=\frac{29}{3}$
Howerer, $n$ cannot be equal to $\frac{29}{3}$ therefore, $n=8$
$\therefore a_{8}=$ Last term $=a+(n-1) d=25+(8-1)(-3)$
$=25+(7)(-3)=25-21$
$=4$
Thus, the last term of the $A.P.$ is $4.$
ત્રણ સંખ્યાઓ સમગુણોત્તર શ્રેણીમાં છે, તો તેના લઘુગુણક.......
અહી $a_{1}, a_{2}, \ldots \ldots, a_{21}$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}$ છે. જો શ્રેણીનાં પદોનો સરવાળો $189,$ હોય તો $a_{6} \mathrm{a}_{16}$ ની કિમંત મેળવો.
ચાર સંખ્યાઓ સમાંતર શ્રેણીમાં છે. તેના પહેલાં અને છેલ્લા પદનો સરવાળો $8$ છે અને વચ્ચે બે પદનો ગુણાકાર $15$ છે, તો શ્રેણીની સૌથી નાની સંખ્યા કઈ છે?
ધારો કે $x_1, x_2 \ldots, x_{100}$ સમાંતર શ્રેણીમાં છે, જ્યાં $x_1=2$ અને તેઓનો મધ્યક $200$ છે.જો $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$ હોય,તો $y_1, y_2, \ldots, y_{100}$ નો મધ્યક
$..........$ છે.
જો $a_{1}, a_{2} \ldots, a_{n}$ એ એક સમાંતર શ્રેણી આપેલ છે કે જેનો સામાન્ય તફાવત પૂર્ણાક હોય અને $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ થાય તથા If $a_{1}=1, a_{n}=300$ અને $15 \leq n \leq 50,$હોય તો $\left( S _{ n -4}, a _{ n -4}\right)$ ની કિમત મેળવો