સમાંતર શ્રેણી $25,22,19, \ldots \ldots .$ નાં નિશ્ચિત સંખ્યાના શરૂઆતના પદનો સરવાળો $116$ હોય તો છેલ્લું પદ શોધો.
Let the sum of $n$ terms of the given $A.P.$ be $116$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
Here, $a=25$ and $d=22-25=-3$
$\therefore S_{n}=\frac{n}{2}[2 \times 25+(n-1)(-3)]$
$\Rightarrow 116=\frac{n}{2}[50-3 n+3]$
$\Rightarrow 232=n(53-3 n)=53 n-3 n^{2}$
$\Rightarrow 3 n^{2}-53 n+232=0$
$\Rightarrow 3 n^{2}-24 n-29 n+232=0$
$\Rightarrow 3 n(n-8)-29(n-8)=0$
$\Rightarrow(n-8)(3 n-29)=0$
$\Rightarrow n=8$ or $n=\frac{29}{3}$
Howerer, $n$ cannot be equal to $\frac{29}{3}$ therefore, $n=8$
$\therefore a_{8}=$ Last term $=a+(n-1) d=25+(8-1)(-3)$
$=25+(7)(-3)=25-21$
$=4$
Thus, the last term of the $A.P.$ is $4.$
જે સમાંતર શ્રેણીનું $k$ મું પદ $5k + 1$ હોય તેના પ્રથમ પદનો સરવાળો શોધો.
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=\frac{2 n-3}{6}$
$x \geqslant 0$ માટે $4^{1+x}+4^{1-x}, \frac{\mathrm{K}}{2}, 16^x+16^{-x}$ એ એક સમાંતર શ્રેણીનાં ત્રણ ક્રમિક પદો હોય, તો $\mathrm{K}$ નું ન્યૂનતમ મૂલ્ય ........... છે.
શ્રેણી $3 +7 + 1 1 + 15+ ... ......$અને $1 +6+ 11 + 16+ ......$ના પ્રથમ $20$ સામાન્ય પદોનો સરવાળો મેળવો.
જો $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ સમાંતર શ્રેણીમાં હોય તો સાબિત કરો કે $a, b, c$ સમાંતર શ્રેણીમાં છે.