A geo-stationary satellite is orbiting the earth at a height of $5R$ above surface of the earth, $R$ being the radius of the earth. The time period of another satellite in hours at a height of $2R$ from the surface of earth is

  • A

    $6 \sqrt 2$

  • B

    $\frac{6}{{\sqrt 2 }}$

  • C

    $5$

  • D

    $10$

Similar Questions

A mass $m$ , travelling at speed $V_0$ in a straight line from far away is deflected when it passes near a black hole of mass $M$ which is at a perpendicular distance $R$ from the original line of flight. $a$ , the distance of closest approach between the mass and the black hole is given by the relation

A body tied to a string of length $L$ is revolved in a vertical circle with minimum velocity, when the body reaches the upper most point the string breaks and the body moves under the influence of the gravitational field of earth along a parabolic path. The horizontal range $AC$ of the body will be

A body weighs $700\,gm\,wt.$ on the surface of the earth. How much will it weigh on the surface of a planet whose mass is $\frac {1}{7}$ and radius half of that of the earth ....... $gm\, wt$

The Earth is assumed to be a sphere of radius $R$. A platform is arranged at a height $R$ from the surface of the Earth. The escape velocity of a body from this platform is $fv$, where $v$ is its escape velocity from the surface of the Earth. the value of $f$ is

A particle is kept at rest at a distance $'R'$ from the surface of earth (of radius $R$). The minimum speed with which it should be projected so that it does not return is