Gujarati
Hindi
7.Gravitation
normal

A geo-stationary satellite is orbiting the earth at a height of $5R$ above surface of the earth, $R$ being the radius of the earth. The time period of another satellite in hours at a height of $2R$ from the surface of earth is

A

$6 \sqrt 2$

B

$\frac{6}{{\sqrt 2 }}$

C

$5$

D

$10$

Solution

$T = \frac{{2\pi {r^{3/2}}}}{{\sqrt {Gm} }}\,\,\,\,\,\,\,\,\,\,\,\,\,\,T \propto {r^{3/2}}\left| \begin{gathered}
  Time\,period\,of \hfill \\
  Gss – 24\,hours \hfill \\ 
\end{gathered}  \right.$

$\Rightarrow \frac{\mathrm{T}_{1}}{\mathrm{T}_{2}}=\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{3 / 2} \Rightarrow \frac{24}{\mathrm{T}_{2}}=\left(\frac{6 \mathrm{R}}{2 \mathrm{R}}\right)^{3 / 2}$

$\Rightarrow \mathrm{T}_{2}=6 \sqrt{2}$ hours

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.