A given charge is situated at a certain distance from an electric dipole in the end-on position experiences a force $F$. If the distance of the charge is doubled, the force acting on the charge will be
$2F$
$F / 2$
$F / 4$
$F / 8$
Two charges, each equal to $q$, are kept at $x = -a$ and $x = a$ on the $x-$axis. A particle of mass $m$ and charge $q_0=\frac{q}{2}$ is placed at the origin. If charge $q_0$ is given a small displacement $(y < < a)$ along the $y-$axis, the net force acting on the particle is proportional to
Assertion : The Coulomb force is the dominating force in the universe.
Reason : The Coulomb force is weaker than the gravitational force.
Two similar spheres having $ + \,q$ and $ - \,q$ charge are kept at a certain distance. $F$ force acts between the two. If in the middle of two spheres, another similar sphere having $ + \,q$ charge is kept, then it experience a force in magnitude and direction as
Two point charges $ + 3\,\mu C$ and $ + 8\,\mu C$ repel each other with a force of $40\,N$. If a charge of $ - 5\,\mu C$ is added to each of them, then the force between them will become....$N$
A total charge $Q$ is broken in two parts ${Q_1}$ and ${Q_2}$ and they are placed at a distance $R$ from each other. The maximum force of repulsion between them will occur, when