A heat source at $T = 10^3\, K$ is connected to another heat reservoir at $T = 10^2\, K$ by a copper slab which is $1\, m$ thick. Given that the thermal conductivity of copper is $0.1\, WK^{-1}\, m^{-1}$, the energy flux through it in the steady state is ........... $Wm^{-2}$

  • [JEE MAIN 2019]
  • A

    $90$

  • B

    $120$

  • C

    $65$

  • D

    $200$

Similar Questions

A metallic rod of cross-sectional area $9.0\,\,cm^2$ and length $0.54 \,\,m$, with the surface insulated to prevent heat loss, has one end immersed in boiling water and the other in ice-water mixture. The heat conducted through the rod melts the ice at the rate of $1 \,\,gm$ for every $33 \,\,sec$. The thermal conductivity of the rod is ....... $ Wm^{-1} K^{-1}$

One likes to sit under sunshine in winter season, because

If the radius and length of a copper rod are both doubled, the rate of flow of heat along the rod increases ....... times

A composite block is made of slabs $A, B, C, D$ and $E$ of different thermal conductivities (given in terms of a constant $K$ ) and sizes (given in terms of length, $L$ ) as shown in the figure. All slabs are of same width. Heat $'Q'$ flows only from left to right through the blocks. Then in steady state $Image$

$(A)$ heat flow through $A$ and $E$ slabs are same.

$(B)$ heat flow through slab $E$ is maximum.

$(C)$ temperature difference across slab $E$ is smallest.

$(D)$ heat flow through $C =$ heat flow through $B +$ heat flow through $D$.

  • [IIT 2011]

Two conducting rods $A$ and $B$ of same length and cross-sectional area are connected $(i)$ In series $(ii)$ In parallel as shown. In both combination a temperature difference of $100^o C$ is maintained. If thermal conductivity of $A$ is $3K$ and that of $B$ is $K$ then the ratio of heat current flowing in parallel combination to that flowing in series combination is