રેખીય વિદ્યુતભાર ઘનતા $\lambda$ ધરાવતો એક લાંબો નળાકાર એક પોલા, સમઅક્ષીય, સુવાહક નળાકાર વડે ઘેરાયેલ છે. બે નળાકારની વચ્ચેના અવકાશમાં વિદ્યુતક્ષેત્ર કેટલું હશે?
Charge density of the long charged cylinder of length $L$ and radius $r$ is $\lambda$.
Another cylinder of same length surrounds the pervious cylinder.
The radius of this cylinder is $R$. Let $E$ be the electric field produced in the space between the two cylinders.
Electric flux through the Gaussian surface is given by Gauss's theorem as,
$\phi=E(2 \pi d) L$
Where, $d=$ Distance of a point from the common axis of the cylinders Let
$q$ be the total charge on the cylinder.
It can be written as $\therefore \phi=E(2 \pi d L)=\frac{q}{\epsilon_{0}}$
Where, $q=$ Charge on the inner sphere of the outer cylinder
$\varepsilon_{0}=$ Permittivity of free space $E(2 \pi d L)=\frac{\lambda L}{\epsilon_{0}}$
$E=\frac{\lambda}{2 \pi \epsilon_{0} d}$
Therefore, the electric field in the space between the two cylinders is $\frac{\lambda}{2 \pi \epsilon_{0} d}$
$10\; cm$ ત્રિજ્યાના એક વાહક ગોળા પર અજ્ઞાત વિદ્યુતભાર છે. ગોળાના કેન્દ્રથી $20\; cm$ દૂરના બિંદુએ વિદ્યુતક્ષેત્ર $-1.5 \times 10^{3} \;N / C$ ત્રિજ્યાવર્તી દિશામાં અંદરની તરફ હોય તો ગોળા પરનો કુલ વિદ્યુતભાર કેટલો હશે?
સમકેન્દ્રિય ગોળીય કવચ $A$ અને $B $ ની ત્રિજયાઓ $r_A$ અને $r_B(r_B>r_A)$ છે.તેના પર વિદ્યુતભાર $Q_A$ અને $-Q_B(|Q_B|>|Q_A|)$ છે.તો વિદ્યુતક્ષેત્ર વિરુધ્ધ અંતરનો નો આલેખ કેવો થાય?
ગોસના નિયમના ઉપયોગો જણાવો.
$S(r)\,\, = \,\,\frac{Q}{{\pi {R^4}}}\,r$ એ $R$ ત્રિજ્યા અને કુલ વિદ્યુતભાર $Q$ વાળા એક ધન ગોળાના વિદ્યુતભાર વિતરણની ઘનતા આપે છે. ગોળાના કેન્દ્રથી $r_1$ અંતરે ગોળાની અંદરના બિંદુ $P$ માટે વિદ્યુતક્ષેત્રનું મૂલ્ય ....... છે.
સમાન વિરૂદ્ધ નિશાની ધરાવતી પૃષ્ઠ વિદ્યુતભાર ઘનતા ($\sigma$ $= 26.4 \times 10^{-12} \ C/m^2$) વાળી બે સમાંતર વિશાળ પાતળી ધાતુની તકતી છે. આ તકતી વચ્ચેનું વિદ્યુતક્ષેત્ર ........$N/C$ છે.