1. Electric Charges and Fields
hard

$R$ ત્રિજ્યા ધરાવતા ઘન ગોળની વિજભાર ઘનતા $0 \leq r \leq R$ માટે $\rho  = {\rho _0}\left( {1 - \frac{r}{R}} \right)$ મુજબ આપવામાં આવે છે. તો બોલની બહાર વિદ્યુતક્ષેત્ર કેટલું હશે?

A

$\frac{{{\rho _0}{R^3}}}{{{\varepsilon _0}{r^2}}}$

B

$\frac{{{4\rho _0}{R^3}}}{{{3\varepsilon _0}{r^2}}}$

C

$\frac{{{3\rho _0}{R^3}}}{{{4\varepsilon _0}{r^2}}}$

D

$\frac{{{\rho _0}{R^3}}}{{{12\varepsilon _0}{r^2}}}$

(JEE MAIN-2018)

Solution

$\text { Charge density, } \rho=\rho_{0}\left(1-\frac{r}{R}\right)$

$d q=\rho d v$

$q_{i n}=\int d q=\rho d v$

$=\rho_{0}\left(1-\frac{r}{R}\right) 4 \pi r^{2} d r \quad\left(\because d v=4 \pi \mathrm{r}^{2} \mathrm{dr}\right)$

$=4 \pi p_{0} \int_{0}^{R}\left(1-\frac{r}{R}\right) r^{2} d r$

$=4 \pi \rho_{0} \int_{0}^{R} r^{2} d r-\frac{r^{2}}{R} d r$

$=4 \pi \rho_{0}\left[\left[\frac{r^{3}}{3}\right]_{0}^{R}-\left[\frac{r^{4}}{4 R}\right]_{0}^{R}\right]$

${=4 \pi \rho_{0}\left[\frac{R^{3}}{3}-\frac{R^{4}}{4 R}\right]}$

${=4 \pi \rho_{0}\left[\frac{R^{3}}{3}-\frac{R^{3}}{4}\right]=4 \pi \rho_{0}\left[\frac{R^{3}}{12}\right]}$

${q=\frac{\pi \rho_{0} R^{3}}{3}}$

$E .4 \pi r^{2}=\left(\frac{\pi \rho_{0} R^{3}}{3 \epsilon_{0}}\right)$

Electric field outside the ball, $E=\frac{\rho_{0} R^{3}}{12 \epsilon_{0} r^{2}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.