- Home
- Standard 11
- Mathematics
A market research group conducted a survey of $1000$ consumers and reported that $720$ consumers like product $\mathrm{A}$ and $450$ consumers like product $\mathrm{B}$, what is the least number that must have liked both products?
$170$
$170$
$170$
$170$
Solution
Let $U$ be the set of consumers questioned, $S$ be the set of consumers who liked the product $A$ and $T$ be the set of consumers who like the product $B.$ Given that
$n( U )=1000, n( S )=720, n( T )=450$
So $ n( S \cup T ) =n( S )+n( T )-n( S \cap T ) $
$=720+450-n( S \cap T )=1170-n( S \cap T ) $
Therefore, $n( S \cup T )$ is maximum when $n( S \cap T )$ is least.
But $S \cup T \subset U$ implies $n( S \cup T ) \leq n( U )=1000 .$
So, maximum values of $n( S \cup T )$ is $1000 .$
Thus, the least value of $n( S \cap T )$ is $170 .$
Hence, the least number of consumers who liked both products is $170$