A market research group conducted a survey of $1000$ consumers and reported that $720$ consumers like product $\mathrm{A}$ and $450$ consumers like product $\mathrm{B}$, what is the least number that must have liked both products?
Let $U$ be the set of consumers questioned, $S$ be the set of consumers who liked the product $A$ and $T$ be the set of consumers who like the product $B.$ Given that
$n( U )=1000, n( S )=720, n( T )=450$
So $ n( S \cup T ) =n( S )+n( T )-n( S \cap T ) $
$=720+450-n( S \cap T )=1170-n( S \cap T ) $
Therefore, $n( S \cup T )$ is maximum when $n( S \cap T )$ is least.
But $S \cup T \subset U$ implies $n( S \cup T ) \leq n( U )=1000 .$
So, maximum values of $n( S \cup T )$ is $1000 .$
Thus, the least value of $n( S \cap T )$ is $170 .$
Hence, the least number of consumers who liked both products is $170$
In a group of $70$ people, $37$ like coffee, $52$ like tea and each person likes at least one of the two drinks. How many people like both coffee and tea?
In a certain school, $74 \%$ students like cricket, $76 \%$ students like football and $82 \%$ like tennis. Then, all the three sports are liked by at least $......\%$
In a certain town, $25\%$ of the families own a phone and $15\%$ own a car; $65\%$ families own neither a phone nor a car and $2,000$ families own both a car and a phone. Consider the following three statements
$(A)\,\,\,5\%$ families own both a car and a phone
$(B)\,\,\,35\%$ families own either a car or a phone
$(C)\,\,\,40,000$ families live in the town
Then,
A college awarded $38$ medals in football, $15$ in basketball and $20$ in cricket. If these medals went to a total of $58$ men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?
In a class of $100$ students,$15$ students chose only physics (but not mathematics and chemistry),$3$ chose only chemistry (but not mathematics and physics), and $45$ chose only mathematics(but not physics and chemistry). Of the remaining students, it is found that $23$ have taken physics and chemistry,$20$ have taken physics and mathematics, and $12$ have taken mathematics and chemistry. The number of student who chose all the three subjects is