એક બજાર-સંશોધન જૂથે $1000$ ઉપભોક્તાઓની મોજણી કરી અને શોધ્યું કે $720$ ગ્રાહકો ઉત્પાદન $\mathrm{A}$ પસંદ કરે છે અને $450$ ઉત્પાદન $\mathrm{B}$ પસંદ કરે છે. બંને ઉત્પાદન પસંદ કરનાર ઉપભોક્તાની ન્યૂનતમ સંખ્યા કેટલી હશે ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $U$ be the set of consumers questioned, $S$ be the set of consumers who liked the product $A$ and $T$ be the set of consumers who like the product $B.$ Given that

$n( U )=1000, n( S )=720, n( T )=450$

So   $ n( S \cup T ) =n( S )+n( T )-n( S \cap T ) $

$=720+450-n( S \cap T )=1170-n( S \cap T ) $

Therefore, $n( S \cup T )$ is maximum when $n( S \cap T )$ is least.

But $S \cup T \subset U$ implies $n( S \cup T ) \leq n( U )=1000 .$

So, maximum values of $n( S \cup T )$ is $1000 .$

Thus, the least value of $n( S \cap T )$ is $170 .$

Hence, the least number of consumers who liked both products is $170$

Similar Questions

એક વર્ગમાં $30$ વિર્ધાથી છે.જો $12$ એ મિસ્ત્રી કામ , $16$ એ ભૈતિક વિજ્ઞાન , $18$ એ ઇતિહાસ વિષય પસંદ કરે છે.જો $30$ વિર્ધાથી પૈકી દરેકે ઓછામાં ઓછો એક વિષય પસંદ કરે છે અને કોઇપણ વિર્ધાથી ત્રણેય વિષય પસંદ ન કરે તો બે વિષય પસંદ કરેલ વિર્ધાથીની સંખ્યા મેળવો.

એક યુધ્દ્વમાં $70\%$ સૈનિક એક આંખ ગુમાવે છે, $80\%$ એ કાન , $75\%$ એ હાથ, $85\%$ એ એક પગ , $x\%$ એ આપેલ ચાર અંગો ગુમાવે છે.તો $x$ ની ન્યૂનતમ કિંમત મેળવો.

એક સંસ્થા પ્રસંગ '$A$' માં $48$ પ્રસંગ '$B$' માં $25$ અને પ્રસંગ '$C$ ' માં $18$ મેડલ આપે છે. જો આ મેડલ $60$ પુરુષોને ફાળે ગયા હોય અને ફક્ત પાંચ પુરુષોને ત્રણેય પ્રસંગોમાં મેડલ મળ્યા હોય, તો ત્રણ પ્રસંગોમાંથી કેટલાને બરાબર બે મેડલ મળ્યા હશે ?

  • [JEE MAIN 2023]

$400$ વ્યક્તિઓના સમૂહમાં, $250$ હિન્દી બોલી શકે છે અને $200$ અંગ્રેજી બોલી શકે છે, તો કેટલી વ્યક્તિઓ હિન્દી અને અંગ્રેજી બંને બોલી શકે ? $400$ પૈકી દરેક વ્યક્તિ આ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલી શકે છે.

એક સ્કુલમાં $800$ વિર્ધાથી છે,જેમાંથી $224$  ક્રિકેટ ,$240$ હોકી ,$336$ બાસ્કેટબોલ રમે છે.જો કુલ વિર્ધાથીમાંથી , $64$ બાસ્કેટબોલ અને હોકી ,$80$ ક્રિકેટ અને બાસ્કેટબોલ તથા $40$ ક્રિકેટ અને હોકી રમે છે. જો $24$ વિર્ધાથી ત્રણેય રમત રમતાં હોય તો  . . . .  વિર્ધાથી એકપણ રમત રમતાં નથી.