એક બજાર-સંશોધન જૂથે $1000$ ઉપભોક્તાઓની મોજણી કરી અને શોધ્યું કે $720$ ગ્રાહકો ઉત્પાદન $\mathrm{A}$ પસંદ કરે છે અને $450$ ઉત્પાદન $\mathrm{B}$ પસંદ કરે છે. બંને ઉત્પાદન પસંદ કરનાર ઉપભોક્તાની ન્યૂનતમ સંખ્યા કેટલી હશે ?
Let $U$ be the set of consumers questioned, $S$ be the set of consumers who liked the product $A$ and $T$ be the set of consumers who like the product $B.$ Given that
$n( U )=1000, n( S )=720, n( T )=450$
So $ n( S \cup T ) =n( S )+n( T )-n( S \cap T ) $
$=720+450-n( S \cap T )=1170-n( S \cap T ) $
Therefore, $n( S \cup T )$ is maximum when $n( S \cap T )$ is least.
But $S \cup T \subset U$ implies $n( S \cup T ) \leq n( U )=1000 .$
So, maximum values of $n( S \cup T )$ is $1000 .$
Thus, the least value of $n( S \cap T )$ is $170 .$
Hence, the least number of consumers who liked both products is $170$
એક સર્વે મુજબ $63\%$ અમેરીકનને ચીઝ અને$76\%$ ને સફરજન પસંદ છે. જો $x\%$ ને ચીઝ અને સફરજન પસંદ હોય તો . . . .
$60$ વ્યક્તિઓના સર્વેક્ષણમાં, $25$ વ્યક્તિઓ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર $1$ વાંચતા, $9\,\mathrm{ H}$ અને $1$ વાંચતા, $11\,\mathrm{ H}$ અને $\mathrm{T}$ બંને વાંચતા, $8\,\mathrm{ T}$ અને $\mathrm{I}$ વાંચતા તથા $3$ તમામ સમાચારપત્ર વાંચતા માલૂમ પડ્યા. ઓછામાં ઓછું એક સમાચારપત્ર વાંચનાર
એક સર્વેક્ષણમાં $21$ વ્યક્તિ ઉત્પાદન $A$ પસંદ કરે છે, $26$ ઉત્પાદન $B$ પસંદ કરે છે અને $29$ ઉત્પાદન $C$ પસંદ કરે છે. જો $14$ વ્યક્તિઓ ઉત્પાદન $A$ અને $B$ બંને પસંદ કરતી હોય, $12$ વ્યક્તિઓ ઉત્પાદન $C$ અને $A$ પસંદ કરતી હોય, $14$ વ્યક્તિઓ ઉત્પાદન $B $ અને $C$ પસંદ કરતી હોય તથા $8$ વ્યક્તિઓ ત્રણેય ઉત્પાદન પસંદ કરતી હોય, તો માત્ર ઉત્પાદન $C $ પસંદ કરતી વ્યક્તિઓની સંખ્યા શોધો.
એક વર્ગમાં $100$ વિર્ધાથી છે જેમાંથી $55$ ગણિતમાં અને $67$ માં ભૈતિક વિજ્ઞાનમાં પાસ થાય છે.તો માત્ર ભૈતિક વિજ્ઞાનમાં પાસ થયેલ વિર્ધાથીની સંખ્યા મેળવો.
એ ક શાળાના $600$ વિદ્યાર્થીઓના સર્વેક્ષણમાં $150$ વિદ્યાર્થીઓ ચા પીતા હતા અને $225$ કૉફી પીતા હતા. $100$ વિદ્યાર્થીઓ ચા અને કૉફી બંને પીતા હતા. કૉફી અને ચા બંને પૈકી કંઈપણ નહિ પીનારા વિદ્યાર્થીઓની સંખ્યા શોધો.