एक बाजार अनुसंधान समूह ने $1000$ उपभोक्ताओं का सर्वेक्षण किया और सूचित किया कि $720$ उपभोक्ताओं ने उत्पाद $A$ तथा $450$ उपभोक्ताओं ने उत्पाद $B$ पसंद् किया। दोनों उत्पादों को पसंद करने वाले उपभोक्ताओं की न्यूनतम संख्या क्या है ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $U$ be the set of consumers questioned, $S$ be the set of consumers who liked the product $A$ and $T$ be the set of consumers who like the product $B.$ Given that

$n( U )=1000, n( S )=720, n( T )=450$

So   $ n( S \cup T ) =n( S )+n( T )-n( S \cap T ) $

$=720+450-n( S \cap T )=1170-n( S \cap T ) $

Therefore, $n( S \cup T )$ is maximum when $n( S \cap T )$ is least.

But $S \cup T \subset U$ implies $n( S \cup T ) \leq n( U )=1000 .$

So, maximum values of $n( S \cup T )$ is $1000 .$

Thus, the least value of $n( S \cap T )$ is $170 .$

Hence, the least number of consumers who liked both products is $170$

Similar Questions

किसी शहर में, $25 \%$ परिवारों के पास फोन है तथा $15 \%$ के पास कार है ; $65 \%$ परिवारों के पास नो फोन है और न ही कार है, तथा $2,000$ परिवारों के पास फोन तथा कार दोनों हैं। निम्न तीन कथनों पर विचार कीजिए

$(a)$ $5 \%$ परिवारों के पास कार तथा फोन दोनों हैं।

$(b)$ $35 \%$ परिवारों के पास या तो कार है या फोन है।

$(c)$ शहर में $40,000$ परिवार रहते हैं। तो,

  • [JEE MAIN 2015]

यदि किसी शहर के $ 10,000$  परिवार में से $ 40\%$  परिवार समाचार पत्र $A, 20\%$ समाचार पत्र $B, 10\%$ समाचार पत्र $C$ तथा $5\% $ परिवार $A$ और $B, 3\% $ परिवार $B$  और $C$ तथा $4\%$ परिवार $A $ और $C$ खरीदते है। यदि $2\%$  परिवार सभी तीन समाचार पत्र खरीदते हैं, तो उन परिवारों की संख्या क्या होगी जो केवल $A$  खरीदते हैं

गणित की एक परीक्षा में लड़कों का औसत प्राप्तांक $x \%$ है तथा लड़कियों का औसत प्रापांक $y \%$ है जहाँ $x \neq y$ | यदि सभी विद्यार्थियों का औसत प्राम्नांक ${ }^2 \%$ है, तब लड़कियों की संख्या तथा कुल विद्यार्थियों की संख्या का अनुपात है

  • [KVPY 2017]

एक सर्वे में बताया गया कि $63\%$  अमेरिकन पनीर पसंद करते हैं तथा $76\%$ सेव पसंद करते हैं। यदि $x\%$ अमेरिकन पनीर और सेव दोनों पसंद करते हैं। तब

एक संस्था ने प्रतियोगिता ' $A$ ' में $48$ पदक, प्रतियोगिता ' $B$ ' में $25$ पदक तथा प्रतियोगिता ' $C$ ' में $18$ पदक दिए। यदि यह पदक कुल $60$ पुरूषों को मिले तथा केवल पाँच पुरूषों को तीनों प्रतियोगिताओं में पदक मिले, तो कितने पुरूषों को ठीक दो प्रतियोगिताओं में पदक मिले?

  • [JEE MAIN 2023]