एक बाजार अनुसंधान समूह ने $1000$ उपभोक्ताओं का सर्वेक्षण किया और सूचित किया कि $720$ उपभोक्ताओं ने उत्पाद $A$ तथा $450$ उपभोक्ताओं ने उत्पाद $B$ पसंद् किया। दोनों उत्पादों को पसंद करने वाले उपभोक्ताओं की न्यूनतम संख्या क्या है ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $U$ be the set of consumers questioned, $S$ be the set of consumers who liked the product $A$ and $T$ be the set of consumers who like the product $B.$ Given that

$n( U )=1000, n( S )=720, n( T )=450$

So   $ n( S \cup T ) =n( S )+n( T )-n( S \cap T ) $

$=720+450-n( S \cap T )=1170-n( S \cap T ) $

Therefore, $n( S \cup T )$ is maximum when $n( S \cap T )$ is least.

But $S \cup T \subset U$ implies $n( S \cup T ) \leq n( U )=1000 .$

So, maximum values of $n( S \cup T )$ is $1000 .$

Thus, the least value of $n( S \cap T )$ is $170 .$

Hence, the least number of consumers who liked both products is $170$

Similar Questions

एक कक्षा में $55$ छात्र हैं, जिनमें विभिन्न विषयों का अध्ययन करने वाले छात्रों की संख्या गणित में $23$, भौतिकी में $24$, रसायन शास्त्र में $19$, गणित और भौतिकी दोनों में $12$, गणित और रसायन शास्त्र में $9$, भौतिकी और रसायन शास्त्र में $7$ और तीनों विषयों में $4$ हैं। वे छात्र जिन्होंने ठीक एक विषय लिया है, उनकी  कुल संख्या कितनी है?

$60$ लोगों के सर्वेक्षण में पाया गया कि $25$ लोग समाचार पत्र $H , 26$ लोग समाचार पत्र $T, 26$ लोग $T$ तथा $I$ दोनों और $3$ लोग तीनों ही समाचार पत्र पढ़ने हैं, तो निम्नलिखित ज्ञात कीजिए :

कम से कम एक समाचार पत्र पढ़ने वालों की संख्या।

एक कक्षा में $30$ छात्र हैं, जिनमें से $12$ सुई का काम सीखते हैं, $16$ भौतिकी लेते हैं और $18$ इतिहास लेते हैं। यदि सभी $30$ छात्र कम से कम एक विषय लेते हैं और कोई भी तीनों विषय नहीं लेता है, तो दो विषय लेने वाले छात्रों की संख्या कितनी है?

एक विद्यालय के $20$ अध्यापक या तो गणित या भौतिकी पढ़ाते हैं, $ 12 $ गणित जबकि $4 $ दोनों विषय पढ़ाते हैं, तब केवल भौतिकी पढ़ाने वाले अध्यापकों की संख्या होगी

किसी विद्यालय के $800 $ लड़कों में से, $224 $ क्रिकेट, $240 $ हॉकी तथा $336 $ बास्केटबॉल खेलते हैं। कुल $64$  बास्केटबॉल और हॉकी, $80 $ क्रिकेट और बास्केटबॉल तथा $40$  क्रिकेट और हॉकी खेलते हैं, तथा $24 $ तीनों खेल खेलते हैं तब कोई भी खेल न खेलने वाले लड़कों की संख्या है