द्रव्यमान $M$ का एक पिण्ड $V$ चाल से चलते हुए $m$ द्रव्यमान के एक स्थिर पिंड से प्रत्यास्थ संघटन करता है। संघटन के वाद द्रव्यमान $M$ तथा $m$ की चाल क्रमशः $V^{\prime}$ तथा $v$ हो जाती है। सभी पिंडों की गति एक रेखीय है, तो

  • [KVPY 2019]
  • A

    $V=V^{\prime}+v$

  • B

    $V^{\prime}=V+v$

  • C

    $V^{\prime}=\frac{(V+v)}{2}$

  • D

    $v=V+V^{\prime}$

Similar Questions

$M$ द्रव्यमान का एक अंतरिक्ष यान $v$ वेग से गति कर रहा है। यह अचानक समान द्रव्यमान $m$ के दो टुकड़ों में टूट जाता है। विस्फोट के पश्चात् $ m$  द्रव्यमान का एक भाग स्थिर हो जाता है। यान के दूसरे भाग का वेग होगा

$125000$ पाउण्ड के एक स्थिर टैंक से $ 25$ पाउण्ड द्रव्यमान का एक छोटा गोला (Shell) $1000$ फीट/सैकण्ड के वेग से दागा जाता है। टैंक निम्न वेग से  .............. $\mathrm{ft/sec}$ पीछे हटेगा

$m$ द्रव्यमान का एक कण ${V_0}$ वेग से $m$द्रव्यमान के ही सरल लोलक से टकराता है तथा इससे चिपक जाता है। लोलक द्वारा प्राप्त अधिकतम ऊँचाई होगी

कणों के किसी निकाय की गति को इसके द्रव्यमान केन्द्र की गति और द्रव्यमान केन्द्र के परित: गति में अलग-अलग करके विचार करना। दर्शाइये कि-

$(a)$ $p = p _{i}^{\prime}+m_{i} V$, जहाँ ( $m_i$, द्रव्यमान वाले) $i-$ वें कण का संवेग है, और $p _{i}^{\prime}=m_{i} v _{i}^{\prime} \mid$ ध्यान द्द कि $v_i^{\prime} $, द्रव्यमान केन्द्र के 

सापेक्ष $i-$ वें कण का वेग है। द्रव्यमान केन्द्र की परिभाषा का उपयोग करके यह भी सिद्ध कीजिए कि $\sum p _{i}^{\prime}=0$

$(b)$ $K=K^{\prime}+1 / 2 M V^{2}$

$K$ कणों के निकाय की कुल गतिज ऊर्जा, $K ^{\prime}=$ निकाय की कुल गतिज ऊर्जा जबकि कणों की गतिज ऊर्जा द्रव्यमान केन्द्र के सापेक्ष ली जाय। $M V^{2} / 2$ संपूर्ण निकाय के (अर्थात् निकाय के द्रव्यमान केन्द्र के ) स्थानान्तरण की गतिज ऊर्जा है। इस परिणाम का उपयोग भाग में किया गया है।

$(c)$ $L = L ^{\prime}+ R \times M V$

जहाँ $L ^{\prime}=\sum r _{i}^{\prime} \times p _{i}^{\prime}$ द्रव्यमान के परित: निकाय का कोणीय संवेग है जिसकी गणना में वेग द्रव्यमान केन्द्र के सापेक्ष मापे गये हैं। याद कीजिए $r _{t}^{\prime}= r _{t}- R$; शेष सभी चिह्न अध्याय में प्रयुक्त विभिन्न राशियों के मानक चिह्न हैं। ध्यान दें कि $L$ ' द्रव्यमान केन्र के परितः निकाय का कोणीय संवेग एवं $M R \times V$ इसके द्रव्यमान केन्द्र का कोणीय संवेग है।

$(d)$ $\frac{d L ^{\prime}}{d t}=\sum r _{t}^{\prime} \times \frac{d p ^{\prime}}{d t}$

यह भी दर्शाइये कि $\frac{d L ^{\prime}}{d t}=\tau_{e x t}^{\prime}$

(जहाँ $\tau_{\text {ext }}^{\prime}$ द्रव्यमान केन्द्र के परित: निकाय पर लगने वाले सभी बाहय बल आघूर्ण हैं।) [ संकेत : द्रव्यमान केन्द्र की परिभाषा एवं न्यूटन के गति के तृतीय नियम का उपयोग कीजिए। यह मान लीजिए कि किन्ही दो कणों के बीच के आन्तरिक बल उनको मिलाने वाली रेखा के अनुदिश कार्य करते हैं।]

$3$ मीटर लम्बाई तथा $3$ किग्रा द्रव्यमान की एक समान चेन, चिकनी टेबल पर, $2$ मीटर टेबल पर रहते हुए प्रलंबन करती है। यदि टेबल से पूर्णतया खिसक जाने पर चेन की जूल में गतिज ऊर्जा $k$ हो, तो $k$ का मान......... है। $\left( g =10 \;m / s ^{2}\right.$ लीजिए $)$

  • [JEE MAIN 2021]