A metallic shell has a point charge ‘$q$’ kept inside its cavity. Which one of the following diagrams correctly represents the electric lines of forces
Eight dipoles of charges of magnitude $e$ are placed inside a cube. The total electric flux coming out of the cube will be
A charge $Q$ is enclosed by a Gaussian spherical surface of radius $R$. If the radius is doubled, then the outward electric flux will
A charge $+q$ is placed somewhere inside the cavity of a thick conducting spherical shell of inner radius $R_1$ and outer radius $R_2$. A charge $+Q$ is placed at a distance $r > R_2$ from the centre of the shell. Then the electric field in the hollow cavity
An electric field $\overrightarrow{\mathrm{E}}=(2 \mathrm{xi}) \mathrm{NC}^{-1}$ exists in space. $\mathrm{A}$ cube of side $2 \mathrm{~m}$ is placed in the space as per figure given below. The electric flux through the cube is .................. $\mathrm{Nm}^2 / \mathrm{C}$
Electric flux through a surface of area $100$ $m^2$ lying in the $xy$ plane is (in $V-m$) if $\vec E = \hat i + \sqrt 2 \hat j + \sqrt 3 \hat k$