Given below are two statement: one is labelled as Assertion $A$ and the other is labelled as Reason $R$.
Assertion $A:$ If an electric dipole of dipole moment $30 \times 10^{-5}\,Cm$ is enclosed by a closed surface, the net flux coming out of the surface will be zero.
Reason $R$ : Electric dipole consists of two equal and opposite charges.
In the light of above, statements, choose the correct answer from the options given below:
Both $A$ and $R$ are true and $R$ is the correct explanation of $A$
$A$ is true but $R$ is false
Both $A$ and $R$ true but $R$ is NOT the correct explanation of $A$
$A$ is false but $R$ is true
Consider a uniform electric field $E =3 \times 10^{3} i\; N / C .$
$(a)$ What is the flux of this field through a square of $10 \;cm$ on a side whose plane is parallel to the $y z$ plane?
$(b)$ What is the flux through the same square if the normal to its plane makes a $60^{\circ}$ angle with the $x -$axis?
A circular disc of radius $R$ carries surface charge density $\sigma(r)=\sigma_0\left(1-\frac{r}{R}\right)$, where $\sigma_0$ is a constant and $r$ is the distance from the center of the disc. Electric flux through a large spherical surface that encloses the charged disc completely is $\phi_0$. Electric flux through another spherical surface of radius $\frac{R}{4}$ and concentric with the disc is $\phi$. Then the ratio $\frac{\phi_0}{\phi}$ is. . . . . .
The electric flux for Gaussian surface A that enclose the charged particles in free space is (given $q_1$ = $-14\, nC$, $q_2$ = $78.85\, nC$, $q_3$ = $-56 \,nC$)
Give definition of electric flux.
What is the direction of electric field intensity ?