A mild steel wire of length $1.0 \;m$ and cross-sectional area $0.50 \times 10^{-2} \;cm ^{2}$ is stretched, well within its elastic limit, horizontally between two pillars. A mass of $100 \;g$ is suspended from the mid-point of the wire. Calculate the depression at the midpoint.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Length of the steel wire $=1.0 m$

Area of cross-section, $A=0.50 \times 10^{-2} cm ^{2}-0.50 \times 10^{-6} m ^{2}$

A mass $100 g$ is suspended from its midpoint.

$m=100 g =0.1 kg$

Hence, the wire dips, as shown in the given figure.

Original length $= XZ$

Depression $=l$

The length after mass $m$, is attached to the wire $= XO + OZ$

Increase in the length of the wire:

$\Delta l=( XO + OZ )- XZ$

$XO = OZ =\left[(0.5)^{2}+l^{2}\right]^{\frac{1}{2}}$

$\therefore \Delta l=2\left[(0.5)^{2}+(l)^{2}\right]^{\frac{1}{2}}-1.0$

$=2 \times 0.5\left[1+\left(\frac{l}{0.5}\right)^{2}\right]^{\frac{1}{2}}-1.0$

Expanding and neglecting higher terms, we get:

$\Delta l=\frac{l^{2}}{0.5}$

Strain $=\frac{\text { Increase in length }}{\text { Original length }}$

Let $T$ be the tension in the wire.

$\therefore m g=2 T \cos \theta$

Using the figure, it can be written as

$\cos \theta=\frac{1}{\left((0.5)^{2}+l^{2}\right)^{\frac{1}{2}}}$

$=\frac{1}{(0.5)\left(1+\left(\frac{l}{0.5}\right)^{2}\right)^{\frac{1}{2}}}$

Expanding the expression and eliminating the higher terms

$\cos \theta=\frac{1}{(0.5)\left(1+\frac{l^{2}}{2(0.5)^{2}}\right)}$

$\left(1+\frac{l^{2}}{0.5}\right)=1$ for small $l$

$\therefore \cos \theta=\frac{l}{0.5}$

$\therefore T=\frac{m g}{2\left(\frac{l}{0.5}\right)}=\frac{m g \times 0.5}{2 l}=\frac{m g}{4 l}$

Stress $=\frac{\text { Tension }}{\text { Area }}=\frac{m g}{4 l \times A}$

Young's modulus $=\frac{\text { Stress }}{\text { Strain }}$

$Y=\frac{m g \times 0.5}{4 l \times A \times l^{2}}$

$I=\sqrt[3]{\frac{m g \times 0.5}{4 Y A}}$

Young's modulus of steel, $Y=2 \times 10^{11} Pa$

$\therefore l=\sqrt{\frac{0.1 \times 9.8 \times 0.5}{4 \times 2 \times 10^{11} \times 0.50 \times 10^{-6}}}$

$=0.0106 m$

Hence, the depression at the midpoint is $0.0106 m$

890-s24

Similar Questions

A metal rod of cross-sectional area $10^{-4} \,m ^{2}$ is hanging in a chamber kept at $20^{\circ} C$ with a weight attached to its free end. The coefficient of thermal expansion of the rod is $2.5 \times 10^{-6} \,K ^{-1}$ and its Young's modulus is $4 \times 10^{12} \,N / m ^{2}$. When the temperature of the chamber is lowered to $T$, then a weight of $5000 \,N$ needs to be attached to the rod, so that its length is unchanged. Then, $T$ is ............ $^{\circ} C$

  • [KVPY 2019]

A steel rod has a radius of $20\,mm$ and a length of $2.0\,m$. A force of $62.8\,kN$ stretches it along its length. Young's modulus of steel is $2.0 \times 10^{11}\,N / m ^2$. The longitudinal strain produced in the wire is $..........\times 10^{-5}$

  • [JEE MAIN 2023]

 A steel wire is stretched with a definite load. If the Young's modulus of the wire is $Y$. For decreasing the value of $Y$

An elastic material of Young's modulus $Y$ is subjected to a stress $S$. The elastic energy stored per unit volume of the material is

  • [AIIMS 1997]

When a stress of $10^8\,Nm^{-2}$ is applied to a suspended wire, its length increases by $1 \,mm$. Calculate Young’s modulus of wire.