- Home
- Standard 11
- Physics
A monoatomic ideal gas, initially at temperature ${T_1},$ is enclosed in a cylinder fitted with a frictionless piston. The gas is allowed to expand adiabatically to a temperature. ${T_2}$ by releasing the piston suddenly. If ${L_1}$ and ${L_2}$ are the lengths of the gas column before and after expansion respectively, then ${T_1}/{T_2}$ is given by
${\left( {\frac{{{L_1}}}{{{L_2}}}} \right)^{2/3}}$
$\frac{{{L_1}}}{{{L_2}}}$
$\frac{{{L_2}}}{{{L_1}}}$
${\left( {\frac{{{L_2}}}{{{L_1}}}} \right)^{2/3}}$
Solution
(d) ${T_1}{V_1}^{\gamma – 1} = {T_2}{V_2}^{\gamma – 1}$$ \Rightarrow \frac{{{T_1}}}{{{T_2}}} = {\left( {\frac{{{V_2}}}{{{V_1}}}} \right)^{\,\gamma – 1}}$$ = {\left( {\frac{{{L_2}A}}{{{L_1}A}}} \right)^{\,\frac{5}{3} – 1}} = {\left( {\frac{{{L_2}}}{{{L_1}}}} \right)^{\,\frac{2}{3}}}$