ન્યુટનના મત અનુસાર, $A$ ક્ષેત્રફળવાળા અને $\Delta v/\Delta z$ જેટલું વેગ-પ્રચલન ધરાવતાં પ્રવાહીના બે સ્તરો વચ્ચે લાગતું શ્યાનતા બળ $F = - \eta A\frac{{\Delta v}}{{\Delta z}}$ છે, જ્યાં $\eta $ શ્યાનતા ગુણાંક છે. $\eta$ નું પારિમાણિક સૂત્ર શું થાય?
ધારો કે $[{\varepsilon _0}]$ એ શૂન્યાવકાશની પરમિટિવિટી અને $[{\mu _0}]$ એ શૂન્યાવકાશ ની પરમીએબીલીટી દર્શાવે છે. જો $M =$ દળ , $L =$ લંબાઈ , $T =$ સમય અને $I =$ વિદ્યુતપ્રવાહ, તો ....
ઊર્જા $(E)$,વેગ $(v)$ અને બળ $(F)$ મૂળભૂત રાશિ હોય,તો દળનું પારિમાણીક સૂત્ર શું થાય?
બે પદ્વિતમાં વેગ,પ્રવેગ અને બળ વચ્ચેનો સંબંધ ${v_2} = \frac{{{\alpha ^2}}}{\beta }{v_1},$ ${a_2} = \alpha \beta {a_1}$ અને ${F_2} = \frac{{{F_1}}}{{\alpha \beta }}.$ હોય,તો દળ, લંબાઇ અને સમય વચ્ચેનો સંબંધ
એક વાસ્તવિક વાયુ માટે અવસ્થા સમીકરણ $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$ થી આપવામાં આવે છે જયાં $\mathrm{P}, \mathrm{V}$ અને
$T$ એ અનુક્મે દબાણ, કદ અને તાપમાન, અને $\mathrm{R}$ એ સાર્વત્રિક વાયુ અચળાંક છે. $\frac{\mathrm{a}}{\mathrm{b}^2}$ નું પરિમાણ_______ના જેવું છે.