In electromagnetic theory, the electric and magnetic phenomena are related to each other. Therefore, the dimensions of electric and magnetic quantities must also be related to each other. In the questions below, $[E]$ and $[B]$ stand for dimensions of electric and magnetic fields respectively, while $\left[\varepsilon_0\right]$ and $\left[\mu_0\right]$ stand for dimensions of the permittivity and permeability of free space respectively. $[L]$ and $[T]$ are dimensions of length and time respectively. All the quantities are given in $SI$ units.
($1$) The relation between $[E]$ and $[B]$ is
$(A)$ $[ E ]=[ B ][ L ][ T ]$ $(B)$ $[ E ]=[ B ][ L ]^{-1}[ T ]$ $(C)$ $[ E ]=[ B ][ L ][ T ]^{-1}$ $(D)$ $[ E ]=[ B ][ L ]^{-1}[ T ]^{-1}$
($2$) The relation between $\left[\varepsilon_0\right]$ and $\left[\mu_0\right]$ is
$(A)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^2[ T ]^{-2}$ $(B)$ $\left[\mu_0\right]=\left[\varepsilon_0\right][ L ]^{-2}[ T ]^2$ $(C)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^2[ T ]^{-2}$ $(D)$ $\left[\mu_0\right]=\left[\varepsilon_0\right]^{-1}[ L ]^{-2}[ T ]^2$
Give the answer or quetion ($1$) and ($2$)
List $I$ | List $II$ |
$A$ Torque | $I$ ${\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}$ |
$B$ Magnetic fileld | $II$ $\left[\mathrm{L}^2 \mathrm{~A}^1\right]$ |
$C$ Magnetic moment | $III$ ${\left[\mathrm{M}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}$ |
$D$ Permeability of free space | $IV$ $\left[\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}\right]$ |
In Vander Waals equation $\left[ P +\frac{ a }{ V ^{2}}\right][ V - b ]= RT$; $P$ is pressure, $V$ is volume, $R$ is universal gas constant and $T$ is temperature. The ratio of constants $\frac{a}{b}$ is dimensionally equal to .................
Using dimensional analysis, the resistivity in terms of fundamental constants $h, m_{e}, c, e, \varepsilon_{0}$ can be expressed as
The velocity $v$ (in $cm/\sec $) of a particle is given in terms of time $t$ (in sec) by the relation $v = at + \frac{b}{{t + c}}$ ; the dimensions of $a,\,b$ and $c$ are