What is the dimensional formula of $a b^{-1}$ in the equation $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$, where letters have their usual meaning.

  • [JEE MAIN 2024]
  • A
    $\left[\mathrm{M}^6 \mathrm{~L}^3 \mathrm{~T}^{-2}\right]$
  • B
    $\left[\mathrm{ML}^2 \mathrm{~T}^{-2}\right]$
  • C
    $\left[M^{-1} L^5 T^3\right]$
  • D
    $\left[M^6 L^7 T^4\right]$

Similar Questions

Electric field in a certain region is given by $\overrightarrow{ E }=\left(\frac{ A }{ x ^2} \hat{ i }+\frac{ B }{ y ^3} \hat{ j }\right)$. The $SI$ unit of $A$ and $B$ are

  • [JEE MAIN 2023]

If we use permittivity $ \varepsilon $, resistance $R$, gravitational constant $G$ and voltage $V$ as fundamental physical quantities, then

The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right)\,(V - b) = RT$. Here $P$ is the pressure, $V$ is the volume, $T$ is the absolute temperature and $a,\,b,\,R$ are constants. The dimensions of $'a'$ are

If $x$  and $a$ stand for distance then for what value of $n$ is given equation dimensionally correct the eq. is  $\int {\frac{{dx}}{{\sqrt {{a^2}\, - \,{x^n}} \,}}\, = \,{{\sin }^{ - 1}}\,\frac{x}{a}} $

The force of interaction between two atoms is given by $F\, = \,\alpha \beta \,\exp \,\left( { - \frac{{{x^2}}}{{\alpha kt}}} \right);$ where $x$ is the distance, $k$ is the Boltzmann constant and $T$ is temperature and $\alpha $ and $\beta $ are two constants. The dimension of $\beta $ is

  • [JEE MAIN 2019]