In a system of units if force $(F)$, acceleration $(A) $ and time $(T)$ are taken as fundamental units then the dimensional formula of energy is
Consider two physical quantities A and B related to each other as $E=\frac{B-x^2}{A t}$ where $E, x$ and $t$ have dimensions of energy, length and time respectively. The dimension of $A B$ is
A gas bubble from an explosion under water oscillates with a period proportional of $P^a\,d^b\,E^c$ where $P$ is the static pressure, $d$ is the density of water and $E$ is the energy of explosion. Then $a,\,b$ and $c$ are
In the relation : $\frac{d y}{d x}=2 \omega \sin \left(\omega t+\phi_0\right)$ the dimensional formula for $\left(\omega t+\phi_0\right)$ is :