2. Electric Potential and Capacitance
hard

એક સમાંતર પ્લેટ કેપેસીટરના $A$ પ્લેટનું ક્ષેત્રફળ ધરાવતી પ્લેટ એકબીજાથી $d$ જેટલા અંતરથી અલગ કરેલ છે. $\frac A2$ક્ષેત્રફળ અને $\frac d2$ જાડાઈ ધરાવતા બે ${K}_{1}$ અને ${K}_{2}$ ડાઈઇલેક્ટ્રિક અચળાંક ધરાવતા સ્લેબને પ્લેટો વચ્ચે જગ્યામાં દાખલ કરવામાં આવે છે. તો આ કેપેસીટરનું કેપેસીટન્સ કેટલું થશે?

A

$\frac{\varepsilon_{0} {A}}{{d}}\left(\frac{1}{2}+\frac{{K}_{1} {K}_{2}}{{K}_{1}+{K}_{2}}\right)$

B

$\frac{\varepsilon_{0} {A}}{{d}}\left(\frac{1}{2}+\frac{{K}_{1} {K}_{2}}{2\left({K}_{1}+{K}_{2}\right)}\right)$

C

$\frac{\varepsilon_{0} {A}}{{d}}\left(\frac{1}{2}+\frac{{K}_{1}+{K}_{2}}{{K}_{1} {K}_{2}}\right)$

D

$\frac{\varepsilon_{0} {A}}{{d}}\left(\frac{1}{2}+\frac{2\left({K}_{1}+{K}_{2}\right)}{{K}_{1} {K}_{2}}\right)$

(JEE MAIN-2021)

Solution

$C_{eq}=\frac{\frac{A}{2} \varepsilon_{0}}{d}+\frac{A \varepsilon_{0}}{d} \frac{K_{1} K_{2}}{K_{1}+K_{2}}$

$=\frac{A \varepsilon_{0}}{d}\left(\frac{1}{2}+\frac{K_{1} K_{2}}{K_{1}+K_{2}}\right)$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.