બિંદુ $A$ (ઊંચાઈ$=2\; \mathrm{m}$) પરથી $\mathrm{m}=1\; \mathrm{kg}$ દળ ધરાવતો કણ એક ઘર્ષણરહિત પથ $(AOC)$ પર ગતિ કરે છે. $\mathrm{C}$ બિંદુ પર પહોચ્યા પછી કણ હવામાં તેની ગતિ સારું રાખે છે.જ્યારે કણ ત્યાથી તેની મહત્તમ ઊંચાઈ $P$ બિંદુ (ઊંચાઈ$=1 \;\mathrm{m}$ ) પર પહોચે ત્યારે તેની ગતિઉર્જા ($\mathrm{J}$ માં) કેટલી થાય?

830-1046

  • [JEE MAIN 2020]
  • A

    $8$

  • B

    $10$

  • C

    $15$

  • D

    $13$

Similar Questions

$10 \,m$ ઊંચાઈથી એક દડાને નીચે છૂટ આપવામાં આવે છે. જો અથડામણને કારણે $40 \%$ જેટલી ઉર્જાનો વ્યય થતો હોય, તો એક અથડામણ પછી દડો .......... $m$ ઉપર જશે.

કણોના તંત્રની ગતિનું દ્રવ્યમાન કેન્દ્રની ગતિ અને દ્રવ્યમાન કેન્દ્રને અનુલક્ષીને ગતિમાં વિભાજન :

$(a)$ બતાવો કે $p = p_i^{\prime}  + {m_i}V$

જ્યાં ${p_i}$ એ $i$ મા કણ ( ${m_i}$ દળના)નું વેગમાન અને $p_i^{\prime}  = {m_i}v_i^{\prime} $

નોંધ $v_i^{\prime} $ દ્રવ્યમાન કેન્દ્રની સાપેક્ષે $i$ મા કણનો વેગ છે.

આ ઉપરાંત દ્રવ્યમાન કેન્દ્રની વ્યાખ્યાનો ઉપયોગ કરીને સાબિત કરો કે $\sum {p_i^{\prime} }  = 0$

$(b)$ બતાવો કે $K=K^{\prime}+1 / 2 M V^{2}$

જ્યાં $K$ એ કણોના તંત્રની કુલ ગતિઊર્જા છે. $K'$ એ જ્યારે કણોના વેગોને દ્રવ્યમાન કેન્દ્રના સંદર્ભમાં લેવામાં આવે છે ત્યારની અને $M V^{2} / 2$ એ સમગ્ર તંત્રની સ્થાનાંતરણની ગતિ ઊર્જા છે. (એટલે કે તંત્રના દ્રવ્યમાન કેન્દ્રની ગતિ). આ પરિણામ પરિચ્છેદ માં ઉપયોગમાં લીધેલ છે.

$(c)$ દર્શાવો કે $L = L ^{\prime}+ R \times M V$ છે.

જ્યાં $L ^{\prime}=\sum r _{i}^{\prime} \times p _{i}^{\prime}$ એ તંત્રના દ્રવ્યમાન કેન્દ્રની સાપેક્ષે તંત્રનું કોણીય વેગમાન છે. જ્યાં વેગોને દ્રવ્યમાન કેન્દ્રની સાપેક્ષે લીધેલ છે. યાદ રાખો $r _{i}^{\prime}= r _{i}- R$; બાકીની બધી સંજ્ઞાઓ એ પ્રકરણમાં ઉપયોગમાં લેવાયેલ પ્રમાણભૂત સંજ્ઞાઓ છે. નોંધો $L'$ અને $M R \times V$ એ અનુક્રમે દ્રવ્યમાન કેન્દ્રને અનુલક્ષીને તંત્રનું કોણીય વેગમાન અને કણોના તંત્રના દ્રવ્યમાન કેન્દ્રનું કોણીય વેગમાન કહેવામાં આવે છે. 

$(d)$ બતાવો કે : = $\frac{d L ^{\prime}}{d t}=\sum r _{i}^{\prime} \times \frac{d p ^{\prime}}{d t}$

વધુમાં, દર્શાવો કે $\frac{d L ^{\prime}}{d t}=\tau_{e x t}^{\prime}$

જ્યાં $\tau_{c t t}^{\prime}$ એ આ તંત્ર પર દ્રવ્યમાન કેન્દ્રને અનુલક્ષીને લાગતા તમામ બાહ્ય ટૉર્કનો સરવાળો છે. (સૂચના : દ્રવ્યમાન કેન્દ્રની વ્યાખ્યા અને ન્યૂટનના ત્રીજા નિયમનો ઉપયોગ કરો. એમ ધારો કે કોઈ પણ બે કણો વચ્ચે લાગતું આંતરિક બળ આ બે કણોને જોડતી રેખાની દિશામાં લાગે છે.)

$0.1 kg $ નો પદાર્થનો બળ વિરુધ્ધ સ્થાનાંતરનો આલેખ આપેલ છે.પદાર્થનો શરૂઆતનો વેગ $0 m/s $ હોય,તો $12m $ અંતર કાપ્યા પછી તેનો વેગ કેટલા .............. $m/s$ થાય?

$m$ દળ ધરાવતા બે સમાન ઘન $A$ અને $B$ લીસી સપાટી પર પડેલા છે તથા એકબીજા સાથે $L $ લંબાઇ અને $k$ બળ અચળાંક ધરાવતી હલકી સ્પ્રિંગ વડે જોડેલા છે. ત્રીજો સમાન ઘન અને $m$ દળ ધરાવતો ઘન $C A$ અને $B $ ને જોડતી રેખા પર ઘન $A$ સાથે $ v $ જેટલા વેગથી અથડામણ કરે છે. તો સ્પ્રિંગમાં ઉદભવતું મહત્તમ સંકોચન......

$10\, kg$ નો દડો $10 \sqrt{3} m / s$નાં વેગથી $x-$અક્ષ પર ગતિ કરે છે.તે સ્થિર રહેલા $20\, kg$ના દડાને અથડાતાં તે સ્થિર થાય છે,$20\, kg$નાં દડાના બે ટુકડા થાય છે.એક $10\, kg$નાં ટુકડા $y-$ અક્ષ પર $10$ $m / s$નાં વેગથી ગતિ કરે છે.બીજો $10\, kg$નો ટુકડો $x-$અક્ષ સાથે $30^{\circ}$ નાં ખૂણે $x\, m / s$નાં વેગથી ગતિ કરે છે , તો $x=......$

  • [JEE MAIN 2021]