- Home
- Standard 11
- Physics
2.Motion in Straight Line
hard
એક કણ ધન $x-$ દિશામાં $v= b\sqrt x$ ના વેગથી ગતિ કરે છે. $t = \tau$ સમયે તેની ઝડપ કેટલી હશે? ($t = 0$ સમયે કણ ઉગમબિંદુ પાસે છે તેમ ધારો)
A${b^2}\tau $
B$\frac{{{b^2}\tau }}{2}$
C$\frac{{{b^2}\tau }}{{\sqrt 2 }}$
D$\frac{{{b^2}\tau }}{4}$
(JEE MAIN-2019)
Solution
$\begin{array}{l}
V = b\sqrt X \\
\frac{{dv}}{{dt}} = \frac{b}{{2\sqrt X }}\frac{{dx}}{{dt}}\,;\,a = \,\frac{{bv}}{{2\sqrt X }}\\
a = \frac{{b\left( {b\sqrt X } \right)}}{{2\sqrt X }}\,;\,\frac{{dv}}{{dt}} = a = \frac{{{b^2}}}{2}\,;\,v = \frac{{{b^2}}}{2}\tau
\end{array}$
V = b\sqrt X \\
\frac{{dv}}{{dt}} = \frac{b}{{2\sqrt X }}\frac{{dx}}{{dt}}\,;\,a = \,\frac{{bv}}{{2\sqrt X }}\\
a = \frac{{b\left( {b\sqrt X } \right)}}{{2\sqrt X }}\,;\,\frac{{dv}}{{dt}} = a = \frac{{{b^2}}}{2}\,;\,v = \frac{{{b^2}}}{2}\tau
\end{array}$
Standard 11
Physics