प्रारंभ में $x$ -अक्ष के अनुदिश $v_{x}$ चाल से गति करती हुई दो आवेशित प्लेटों के मध्य क्रेत्र में $m$ द्रब्यमान तथा $-q$ आवेश का एक कण प्रवेश करता है ( चित्र में कण $1$ के समान )। प्लेटों की लंबाई $L$ है। इन दोनों प्लेटों के बीच एकसमान विध्युत क्षेत्र $E$ बनाए रखा जाता है। दर्शाइए कि प्लेट के अतिम किनारे पर कण का ऊर्ध्वाधर विक्षेप $q E L^{2} /\left(2 m v_{x}^{2}\right)$ है।

897-27

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Charge on a particle of mass $m =- q$

Velocity of the particle $= v _{ x }$

Length of the plates $= L$

Magnitude of the uniform electric field between the plates $= E$

Mechanical force, $F =$ Mass $( m ) \times$ Acceleration (a) $\Rightarrow a=\frac{F}{m}$

$\Rightarrow a=\frac{q E}{m} \ldots \therefore(1)$$\text { [as electric force, } F=q E]$

Time taken by the particle to cross the field of length $L$ is given by,

$t=\frac{\text { Length of the plate }}{\text { Velocity of the particle }}=\frac{L}{V_{x}} \ldots(2)$

In the vertical direction, initial velocity, $u=0$ According to the third equation of motion, vertical deflection s of the particle can be obtained as,

$s=ut+\frac 12 at^2$

$\Rightarrow s=0+\frac{1}{2}\left(\frac{q E}{m}\right)\left(\frac{L}{V_{x}}\right)^{2}$ $[\text { From }(1) \text { and }(2)]$

$\Rightarrow s=\frac{q E L^{2}}{2 m V_{x}^{2}}$

Hence, vertical deflection of the particle at the far edge of the plate is $\frac{q E L^{2}}{2 m V_{x}^{2}} .$ This is similar to the motion of horizontal projectiles under gravity.

Similar Questions

$1\,m$ लम्बी दो समानान्तर पट्यिों के बीच, $E =$ $(8 m / e )\,V / m$ मान का एकसमान विद्युत क्षेत्र उत्पन्न किया जाता है, (जहाँ $m =$ इलेक्ट्रॉन का द्रव्यमान एवं $e =$ इलेक्ट्रॉन का आवेश) दोनों पट्टियों के बीच सममित रूप से एक इलेक्ट्रॉन $2\,m / s$ की चाल से प्रवेश करता है। जब यह इलेक्ट्रॉन विद्युत क्षेत्र से बाहर निकलता है, तो इसके पथ में हुए विक्षेप का कोण होगा :

  • [JEE MAIN 2022]

एकसमान विद्युत क्षेत्र, $\overrightarrow{ E }=-400 \sqrt{3} \hat{ y } NC ^{-1}$ को एक क्षेत्र में आरोपित किया गया है। $q$ धनात्मक आवेश ग्रहण किये हुए $m$ द्रव्यमान के एक आवेशित कण को इस क्षेत्र में $2 \sqrt{10} \times 10^6 ms ^{-1}$ की प्रारम्भिक चाल से प्रक्षेपित किया जाता है। इस कण का उद्देश्य लक्ष्य $T$ से टकराने का है, जो कि क्षेत्र के अन्दर इसके प्रवेश बिन्दु से $5 m$ की दूरी पर है जैसा कि चित्र में सांकेतिक रूप से दर्शाया गया है। $\frac{ q }{ m }=10^{10} Ckg ^{-1}$ लीजिये। तब

$(A)$ कण $T$ से टकरायेगा, यदि इसे क्षैतिज से $45^{\circ}$ कोण पर प्रक्षेपित किया जाता है।

$(B)$ कण $T$ से टकरायेगा, यदि इसे क्षैतिज से या तो $30^{\circ}$ या $60^{\circ}$ कोण पर प्रक्षेपित किया जाता है।

$(C)$ $T$ से टकराने में कण द्वारा लिया गया समय $\sqrt{\frac{5}{6}} \mu s$ तथा $\sqrt{\frac{5}{2}} \mu s$ हो सकता है।

$(D)$ $T$ से टकराने में कण द्वारा लिया गया समय $\sqrt{\frac{5}{3}} \mu s$ है।

  • [IIT 2020]

$100\,mg$ द्रव्यमान के एक धनावेशित कण को सामर्थ्य $1 \times 10^5\,NC ^{-1}$ के एक समान विद्युत क्षेत्र की विपरीत दिशा में फेंका जाता है। यदि कण पर आवेश $40\,\mu C$ है एवं कण का प्रारम्भिक वेग $200\,ms ^{-1}$ है तो कण क्षणिक रूप से विराम में आने से पूर्व $.........\,m$ दूर चलेगा ।

  • [JEE MAIN 2022]

किसी द्रव्यमान $m = 20\,gm$ पर आवेश $q = 3.0\,mC$ है। यह $20\,m/s$ के वेग से चलता हुआ एक ऐसे क्षेत्र में प्रवेश करता है जहाँ विद्युत क्षेत्र $80\,N/C$ है तथा विद्युत क्षेत्र की दिशा वही है जो द्रव्यमान के वेग की। इस क्षेत्र में $3$ सैकण्ड के बाद बाद द्रव्यमान का वेग .......$m/s$ होगा

कोई इलेक्ट्रॉन $2.0 \times 10^{4}\, N C ^{-1}$ परिमाण के एकसमान विध्यूत क्षेत्र में $1.5 \,cm$ दूरी तक गिरता है [चित्र $( a )]$ । क्षेत्र का परिमाण समान रखते हुए इसकी दिशा उत्क्रमित कर दी जाती है तथा अब कोई प्रोटोन इस क्षेत्र में उतनी ही दूरी तक गिरता है [ चित्र $( b )$ ]। दोनों प्रकरणों में गिरने में लगे समय की गणना कीजिए। इस परिस्थिति की 'गुरूत्व के अधीन मुक्त पतन' से तुलना कीजिए।