- Home
- Standard 12
- Physics
एक $M$ द्रव्यमान तथा $Q$ धन आवेश का कण, जो $\vec{u}_1=4 \hat{i} ms ^{-1}$ के एकसमान वेग से गतिशील है, एकसमान स्थिर चुम्बकीय क्षेत्र में $x-y$ तल के अभिलम्बवत् है तथा इसका विस्तार क्षेत्र $x=0$ से $x=L$ तक प्रत्येक $y$ के मान के लिए है। इस चुम्बकीय क्षेत्र को यह कण $10$ मिली सैकण्ड में पार कर दूसरी ओर $\overrightarrow{ u }_2=2(\sqrt{3} \hat{ i }+\hat{ j }) ms ^{-1}$ वेग से प्रकट होता है। सही प्रकथन है/ हैं -
$(A)$ चुम्बकीय क्षेत्र $- z$ दिशा में है।
$(B)$ चुम्बकीय क्षेत्र $+z$ दिशा में है।
$(C)$ चुम्बकीय क्षेत्र का परिमाण $\frac{50 \pi M }{3 Q }$ इकाई है।
$(D)$ चुम्बकीय क्षेत्र का परिमाण $\frac{100 \pi M }{3 Q }$ इकाई है।
$(B,D)$
$(B,C)$
$(A,C)$
$(A,D)$
Solution
कण के अन्तिम वेग का घटक धनात्मक $y$ दिशा में है
वृत्त का केन्द्र धनात्मक $y$ अक्ष पर उपस्थित है। अतः चुम्बकीय क्षेत्र ऋणात्मक $z$-दिशा में उपस्थित है विचलन कोण $30^{\circ}$ है क्योंकि
$\tan \theta=\frac{v_y}{v_x}=\frac{1}{\sqrt{3}} $
$\theta=\frac{\pi}{6} $
$\omega t=\theta $
$\theta=\frac{Q B}{M} t $
$B=\frac{M \theta}{Q t} $
$B=\left(\frac{50 M \pi}{3 Q}\right)$