एक $m$ द्रव्यमान की वस्तु श्रेणीक्रम में जुडी हुई ${k_1}$ एवं ${k_2}$ बल नियतांक की स्प्रिंगों से लटकी हुई है। वस्तु का दोलनकाल होगा

  • [AIPMT 1990]
  • [AIIMS 2019]
  • A

    $T = 2\pi \sqrt {\left( {\frac{m}{{{K_1} + {K_2}}}} \right)} $

  • B

    $T = 2\pi \sqrt {\left( {\frac{m}{{{K_1} + {K_2}}}} \right)} $

  • C

    $T = 2\pi \sqrt {\left( {\frac{{m({K_1} + {K_2})}}{{{K_1}{K_2}}}} \right)} $

  • D

    $T = 2\pi \sqrt {\left( {\frac{{m{K_1}{K_2}}}{{{K_1} + {K_2}}}} \right)} $

Similar Questions

यदि दो सर्वसम कमानियों, जिनमें प्रत्येक का कमानी स्थिरांक $K _{1}$ हैं, को श्रेणी में संयोजित किया गया है, तो नया कमानी स्थिरांक और आवर्तकाल किस गुणांक से परिवर्तित होंगे ?

  • [JEE MAIN 2021]

एक नगण्य द्रव्यमान की स्प्रिंग से $m$ द्रव्यमान को ऊध्र्वत: लटकाया गया है, यह निकाय $n$ आवृत्ति से दोलन करता है। निकाय की आवृत्ति क्या होगी यदि उसी स्प्रिंग से $4m$ द्रव्यमान लटका दिया जाए

  • [AIPMT 1998]

एक द्रव्यमान $M$ एक नगण्य द्रव्यमान की स्प्रिंग से लटक रहा है। ​स्प्रिंग को थोड़ा सा खींच कर छोड़ने पर द्रव्यमान आवर्तकाल $T$ से दोलन करने लगता है यदि द्रव्यमान में वृद्धि $m$ कर दी जाये तो आवर्तकाल $\frac{{5T}}{3}$ हो जाता है। तो  $\frac{m}{M}$ का मान है

  • [AIEEE 2003]

एक स्प्रिंग की स्वतंत्र लम्बाई $l$ तथा बल नियतांक $k$ है। इसे काटकर $l_{1}$ तथा $l_{2}$ स्वतंत्र लम्बाई की दो स्प्रिंगों में बाँटते है। $l_{1}= n l_{2}$ है, जहाँ $n$ एक पूर्णाक है। इनमें सम्बद्ध बल नियतांकों $k _{1}$ तथा $k _{2}$ का अनुपात, $k _{1} / k _{2}$ होगा।

  • [JEE MAIN 2019]

किसी कमानी से लटका एक पिण्ड एक क्षैतिज तल में कोणीय वेग $\omega$ से घर्षण या अवमंदन रहित दोलन कर सकता है। इसे जब $x_{0}$ दूरी तक खींचते हैं और खींचकर छोड़ देते हैं तो यह संतुलन केन्द्र से समय $t=0$ पर $v_{0}$ वेग से गुजरता है। प्राचल $\omega . x_{0}$ तथा $v_{0}$ के पदों में परिणामी दोलन का आयाम ज्ञात करिये। [संकेत: समीकरण $x=a \cos (\omega t+\theta)$ से प्रारंभ कीजिए। ध्यान रहे कि प्रारंभिक वेग ऋणात्मक है। ]