एक कण जिसका द्रव्यमान $m$ तथा आवेश $q$ है किसी एकसमान विधुत क्षेत्र $E$ में स्थिर है फिर इसे मुक्त कर दिया जाये तो $y$ दूरी चलने के पश्चात इसके द्वारा प्राप्त गतिज ऊर्जा होगी:
$qE{y^2}$
$q{E^2}y$
$qEy$
${q^2}Ey$
छः आवेशों $+ q - q + q .- q$, $+ q$ एवं $- q$ को $d$ भुजा वाले एक षटभुज के कौनो पर चित्रानुसार लगाया गया है। अनन्त से आवेश $q _0$ को षटभुज के केन्द्र तक लाने में किया गया कार्य है :
( $\varepsilon_0$ - मुक्त आकाश का परावैद्युतांक)
दो धनात्मक बिन्दु आवेश $12\,\mu C$ व $8\,\mu C$ एक दूसरे से $10$ सेमी. दूरी पर रखे हैं। इन्हें $4$ सेमी. तक पास लाने में किया गया कार्य होगा
प्रोटॉन इलेक्ट्रॉन से लगभग $1840$ गुना भारी है। जब इसे $1\, kV$ विभवान्तर से त्वरित किया जाता है तो इसकी गतिज ऊर्जा .......$keV$ होगी
इस प्रश्न में प्रकथन $1$ एवं प्रकथन $2$ दिये हुए हैं। प्रकथनों के पश्चात् दिये गये चार विकल्पों में से, उस विकल्प को चुनिए जोकि दोनों प्रकथनों का सर्वोत्तम वर्णन करता है।
त्रिज्या $R$ के एक विध्युत रोधी ठोस गोले पर एकसमान धनात्मक आवेश घनत्व $\rho$ हैं। इस एकसमान आवेश वितरण कें कारण विध्युत विभव का मान गोले के केन्द्र पर, गोले के पृष्ठ पर और गोले से बाहर एक बिन्दु पर परिमित है। अनन्त पर विध्युत विभव का मान शून्य है
प्रकथन $1 :$ जव एक आवेश $q$ को गोले के केन्द्र से पृष्ठ तक ले जाया जाता है, तब स्थितिज ऊर्जा में $\frac{q \rho}{38_{0}}$ से परिवर्तन होता है।
प्रकथन $2 :$ गोले के केन्द्र से दूरी $r( r < R)$ पर विध्युत क्षेत्र $\frac{\rho r}{3 \varepsilon_{0}}$ है।
निम्न चित्र में एक बिन्दु आवेश को बिन्दु $P$ से $A$, $B$ तथा $C$ तक लाने में कार्य क्रमश: $W_A$, $W_B$ तथा $W_c$ ,है, तब