एक कण जिसका द्रव्यमान $m$ तथा आवेश $q$ है किसी एकसमान विधुत क्षेत्र $E$ में स्थिर है फिर इसे मुक्त कर दिया जाये तो $y$ दूरी चलने के पश्चात इसके द्वारा प्राप्त गतिज ऊर्जा होगी:
$qE{y^2}$
$q{E^2}y$
$qEy$
${q^2}Ey$
$1\,gm$ द्रव्यमान तथा ${10^{ - 8}}\,C$ आवेश की एक गेंद को बिन्दु $A$ जिस पर $600\, V$ विभव है से बिन्दु $B$ जिस पर विभव शून्य है तक ले जाया जाता है। बिन्दु $B$ पर गेंद का वेग $20$ सेमी./सैकण्ड़ है। बिन्दु $A$ पर गेंद का वेग होगा
$5$ कूलॉम का एक आवेश $0.5\,m$ से विस्थापित किया जाता है। इस प्रक्रिया में किया गया कार्य $10$ जूल है। दोनों बिन्दुओं के बीच विभवान्तर ........$V$ होगा
$m$ द्रव्यमान के एक बिन्दु आवेश $q$ को $\ell$ लम्बाई की एक डोरी द्वारा ऊर्ध्वाधर रूप से लटकाया जाता है। अब द्विध्रुव आघूर्ण $\overrightarrow{ p }$ के एक बिन्दु द्विध्रुव को अनन्त से $q$ की ओर इस प्रकार लाया जाता है कि आवेश दूर गति करता है। द्विध्रुव की दिशा, कोणों तथा दूरियों सहित निकाय की अन्तिम साम्य स्थिति नीचे चित्र में दर्शायी गई है। यदि द्विध्रुव को इस स्थिति तक लाने में किया गया कार्य $N \times( mgh )$ है, जहाँ $g$ गुरूत्वीय त्वरण है, जब $N$ का मान. . . . . . . है। (ध्यान दीजिये की बिन्दु द्रव्यमान को साम्यावस्था में बनाए रखते हुए तीन समतलीय बलों के लिए, $\frac{ F }{\sin \theta}$ सभी बलों के लिए समान है, जहाँ $F$ कोई एक बल है तथा $\theta$ अन्य दो बलों के मध्य कोण है।)
निम्न चित्र में दिखाये अनुसार एक बिन्दु आवेश $6$ एक समान आवेशों से सममित रूप से घिरा है। स्थिर वैद्युत बलों के द्वारा आवेश $q$ को केन्द्र से अनन्त तक चलाने में कार्य होगा
एक मूल कण जिसका द्रव्यमान $m$ व आवेश $ + \,e$ है को $v$ वेग से एक बहुत भारी कण जिस पर आवेश $Ze$ (जहाँ $Z > 0$) है, की ओर प्रक्षेपित किया जाता है। आपतित कण की निकटतम पहुँच दूरी होगी