एक व्यक्ति की दसवीं पीढ़ी तक पूर्वजों की संख्या कितनी होगी, जबकि उसके $2$ माता-पिता, $4$ दादा-दादी, $8$ पर दादा, पर दादी तथा आदि हैं।
Here $a=2, r=2$ and $n=10$
Using the sum formula $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
We have $S_{10}=2\left(2^{10}-1\right)=2046$
Hence, the number of ancestors preceding the person is $2046$
यदि $b$, एक ऐसी अपरिमित गुणोत्तर श्रेढ़ी जिसका योग $5$ है, का प्रथम पद है, तो $b$ जिस अंतराल में स्थित है, वह है
यदि किसी गुणोत्तर श्रेणी का प्रथम पद $a$, अन्तिम पद $l$ तथा सार्वअनुपात $r$ हो, तो इस श्रेणी के पदों की संख्या है
निम्नाकित चित्र में दर्शाए अनुसार, मान लें कि $S_1$ ऐसे वर्गों के क्षेत्रफल का योग है जिसकी भुजाएँ नियामक अक्षों के समान्तर है. मान लें कि नत $(slanted)$ बर्गों के क्षेत्रफलों का योग $S_2$ है. तब $S_1 / S_2$ का मान होगा
$\overline {0.037} $ का मान, जहाँ $\overline {.037} $ संख्या $0.037037037........$ को निरूपित करता है
यदि किसी गुणोत्तर श्रेणी के तीन पदों का योग $19$ एवं गुणनफल $216$ हो, तो श्रेणी का सार्व-अनुपात होगा