एक व्यक्ति की दसवीं पीढ़ी तक पूर्वजों की संख्या कितनी होगी, जबकि उसके $2$ माता-पिता, $4$ दादा-दादी, $8$ पर दादा, पर दादी तथा आदि हैं।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here $a=2, r=2$ and $n=10$

Using the sum formula $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

We have    $S_{10}=2\left(2^{10}-1\right)=2046$

Hence, the number of ancestors preceding the person is $2046$

Similar Questions

यदि ${\log _x}a,\;{a^{x/2}}$ व ${\log _b}x$ गुणोत्तर श्रेणी में हों, तब $x =$

किसी गुणोत्तर श्रेणी के कुछ पदों का योग $728$ है। यदि सार्वानुपात $3$ तथा अंतिम पद $486$ हो, तो श्रेणी का प्रथम पद होगा

यदि गुणोत्तर श्रेणी के अनंत पदों का योगफल $s$ तथा प्रथम पद $a$ है, तो सार्वअनुपात $r$ होगा

यदि $x,\;y,\;z$ गुणोत्तर श्रेणी में हों व ${a^x} = {b^y} = {c^z}$, तो

  • [IIT 1968]

यदि $a,\;b,\;c$ गुणोत्तर श्रेणी के $p$ वें, $q$ वें तथा $r$ वें पद हैं, तब ${\left( {\frac{c}{b}} \right)^p}{\left( {\frac{b}{a}} \right)^r}{\left( {\frac{a}{c}} \right)^q}$ का मान है