$1+x^2+x^4+x^6+\ldots+x^{2010}$ बहुपद $(polynomial)$ को विभाजन करने वाले $1+x+x^2+x^3+\ldots+x^{n-1}$ बहुपद के लिए अंतराल $[1005,2010]$ में कितनो प्राकृत संख्याएं $(natural\,numbers)$ हों गी?
$0$
$100$
$503$
$1006$
$0.5737373...... = $
अनुक्रम $2,4,8,16,32$ तथा $128,32,8,2, \frac{1}{2}$ के संगत पदों के गुणनफल से बने अनुक्रम का
योगफल ज्ञात कीजिए।
यदि $x,\;y,\;z$ गुणोत्तर श्रेणी में हों व ${a^x} = {b^y} = {c^z}$, तो
एक गुणोत्तर श्रेणी में तीसरा पद $24$ तथा $6$ वाँ पद $192$ है, तो $10$ वाँ पद ज्ञात कीजिए।
यदि $a,\,b,\,c$ समान्तर श्रेणी में तथा ${a^2},\,{b^2},{c^2}$ हरात्मक श्रेणी में हों, तो